Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Neural networks for system identification of coupled ship dynamics

Martin, P. and Katebi, Reza and Yamamoto, I. and Daigo, K. and Kobayashi, E. and Matsuura, M. and Hashimoto, M. and Hirayama, H. and Okamoto, N. (2002) Neural networks for system identification of coupled ship dynamics. In: Control applications in marine systems 2001 (CAMS 2001). IFAC Proceedings Series . PERGAMON-ELSEVIER SCIENCE LTD, Kidlington, pp. 83-88. ISBN 0080432360

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

System identification of coupled ship dynamics is problematic with standard least squares methods due to the non-linear, multivariable nature of the system. Neural Networks have therefore been applied to this problem, as they are particularly suitable for approximating non-linear, multivariable functions. In this paper, results of identification with Neural Networks are given for a ship motion simulation based on a standard mathematical model, and for real data collected from a 1/50(th) scale model of the system. The method is seen to be successful at various operating points, and ideas for extension of the work are discussed.