Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Neural networks for system identification of coupled ship dynamics

Martin, P. and Katebi, Reza and Yamamoto, I. and Daigo, K. and Kobayashi, E. and Matsuura, M. and Hashimoto, M. and Hirayama, H. and Okamoto, N. (2002) Neural networks for system identification of coupled ship dynamics. In: Control applications in marine systems 2001 (CAMS 2001). IFAC Proceedings Series . PERGAMON-ELSEVIER SCIENCE LTD, Kidlington, pp. 83-88. ISBN 0080432360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

System identification of coupled ship dynamics is problematic with standard least squares methods due to the non-linear, multivariable nature of the system. Neural Networks have therefore been applied to this problem, as they are particularly suitable for approximating non-linear, multivariable functions. In this paper, results of identification with Neural Networks are given for a ship motion simulation based on a standard mathematical model, and for real data collected from a 1/50(th) scale model of the system. The method is seen to be successful at various operating points, and ideas for extension of the work are discussed.