Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Variable gain semiconductor optical linear amplifier (OLA)

Michie, W.C. and Kelly, A.E. and Tomlinson, A. and Andonovic, I. (2002) Variable gain semiconductor optical linear amplifier (OLA). In: Semiconductor lasers and optical amplifiers for lightwave communication systems. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) . SPIE, Bellingham, pp. 1-8. ISBN 0819446505

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The semiconductor optical amplifier (SOA) is a versatile component that can be deployed to meet the expanding applications associated with the introduction of additional functionalities at the optical level in wavelength division multiplexed systems. The future network requires low cost, small footprint, directly controllable amplification throughout the different application layers from long haul through to metro; the intrinsic size and integration capability advantages will ensure that the SOA plays a key role in this evolution. In multi-wavelength gating/amplification applications the gain dynamics, oscillating at timescales comparable to that of the data which is being amplified, introduce issues of pattern dependent waveform distortion (patterning) in single channel, and inter-channel cross-talk in multi-wavelength cases which require management through careful SOA design and understanding of the network application scenarios. In this paper, an optical linear amplifier (OLA) architecture with the unique capability to provide variable gain whilst maintaining linear operation at high output saturation powers will be described. Initial characterisation results for the OLA will be presented.