Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Impulse-driven surface breakdown data : a Weibull statistical analysis

Wilson, Mark and Given, M and Timoshkin, Igor and MacGregor, Scott and Wang, Tao and Sinclair, M.A. and Thomas, K.J. and Lehr, Jane (2012) Impulse-driven surface breakdown data : a Weibull statistical analysis. IEEE Transactions on Plasma Science, 40 (10). 2449 - 2456. ISSN 0093-3813

[img]
Preview
PDF
06135814.pdf - Submitted Version

Download (622kB) | Preview

Abstract

Surface breakdown of oil-immersed solids chosen to insulate high-voltage, pulsed-power systems is a problem that can lead to catastrophic failure. Statistical analysis of the breakdown voltages, or times, associated with such liquid-solid interfaces can reveal useful information to aid system designers in the selection of solid materials. Described in this paper are the results of a Weibull statistical analysis, applied to both breakdown-voltage data and time-to-breakdown data generated in gaps consisting of five different solid polymers immersed in mineral oil. Values of the location parameter γ provide an estimate of the applied voltage below which breakdown will not occur, and under uniform-field conditions, γ varied from 192 kV (480 kV/cm) for polypropylene to zero for ultra-high molecular weight polyethylene. Longer times to breakdown were measured for UHMWPE when compared with the other materials. However, high values of the shape parameter β reported in the present paper suggest greater sensitivity to an increase in applied voltage – that is, the probability of breakdown increases more sharply with increasing applied voltage for UHMWPE compared to the other materials. Analysing peak-applied-voltage data, only PP consistently reflected a low value of β across the different sets of test conditions. In general, longer mean times to breakdown were found for solid materials of εr more closely matched to that of the surrounding mineral oil