Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Convergence analysis of a residual local projection method for the Navier-Stokes equation

Araya, Rodolfa and Barrenechea, Gabriel and Poza, A. and Valentin, Frédéric (2012) Convergence analysis of a residual local projection method for the Navier-Stokes equation. SIAM Journal on Numerical Analysis, 50 (2). pp. 669-699. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This work presents and analyzes a new residual local projection stabilized finite element method (RELP) for the nonlinear incompressible Navier–Stokes equations. Stokes problems defined elementwise drive the construction of the residual-based terms which make the present method stable for the finite element pairs $\mathbb{P}_1/\mathbb{P}_l$, $l=0,1$. Numerical upwinding is incorporated through an extra control on the advective derivative and on the residual of the divergence equation. Well-posedness of the discrete problem as well as optimal error estimates in natural norms are proved under standard assumptions. Next, a divergence-free velocity field is provided by a simple postprocessing of the computed velocity and pressure using the lowest order Raviart–Thomas basis functions. This updated velocity is proved to converge optimally to the exact solution. Numerics assess the theoretical results and validate the RELP method.