Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Convergence analysis of a residual local projection method for the Navier-Stokes equation

Araya, Rodolfa and Barrenechea, Gabriel and Poza, A. and Valentin, Frédéric (2012) Convergence analysis of a residual local projection method for the Navier-Stokes equation. SIAM Journal on Numerical Analysis, 50 (2). pp. 669-699. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This work presents and analyzes a new residual local projection stabilized finite element method (RELP) for the nonlinear incompressible Navier–Stokes equations. Stokes problems defined elementwise drive the construction of the residual-based terms which make the present method stable for the finite element pairs $\mathbb{P}_1/\mathbb{P}_l$, $l=0,1$. Numerical upwinding is incorporated through an extra control on the advective derivative and on the residual of the divergence equation. Well-posedness of the discrete problem as well as optimal error estimates in natural norms are proved under standard assumptions. Next, a divergence-free velocity field is provided by a simple postprocessing of the computed velocity and pressure using the lowest order Raviart–Thomas basis functions. This updated velocity is proved to converge optimally to the exact solution. Numerics assess the theoretical results and validate the RELP method.