Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Computable error bounds for nonconfirming Fortin-Soulie finite element approximation of the Stokes problem

Ainsworth, Mark and Allendes Flores, Alejandro Ignacio and Barrenechea, Gabriel and Rankin, Richard Andrew Robert (2012) Computable error bounds for nonconfirming Fortin-Soulie finite element approximation of the Stokes problem. IMA Journal of Numerical Analysis, 32 (2). pp. 414-447. ISSN 0272-4979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We propose computable a posteriori error estimates for a second order nonconforming finite element approximation of the Stokes problem. The estimator is completely free of unknown constants and gives a guaranteed numerical upper bound on the error, in terms of a lower bound for the inf-sup constant of the underlying continuous problem. The estimator is also shown to provide a lower bound on the error up to a constant and higher order data oscillation terms. Numerical results are presented illustrating the theory and the performance of the estimator.