Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Classification and de-noising of communication signals using kernel principal component analysis (KPCA)

Koutsogiannis, G. and Soraghan, J.J. (2002) Classification and de-noising of communication signals using kernel principal component analysis (KPCA). In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002-05-13 - 2002-05-17, Renaissance Orlando Resort.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper is concerned with the classification and de-noising problem for non-linear signals. It is known that using kernel functions, a non-linear signal can be transformed into a linear signal in a higher dimensional space. In that feature space, a linear algorithm can be applied to a non-linear problem. It is proposed that using the principal components extracted from the feature space, the signal can be classified correctly in its input space. Additionally, it is shown how this classification process' can be used to de-noise DQPSK communication signals