Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Classification and de-noising of communication signals using kernel principal component analysis (KPCA)

Koutsogiannis, G. and Soraghan, J.J. (2002) Classification and de-noising of communication signals using kernel principal component analysis (KPCA). In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002-05-13 - 2002-05-17, Renaissance Orlando Resort.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper is concerned with the classification and de-noising problem for non-linear signals. It is known that using kernel functions, a non-linear signal can be transformed into a linear signal in a higher dimensional space. In that feature space, a linear algorithm can be applied to a non-linear problem. It is proposed that using the principal components extracted from the feature space, the signal can be classified correctly in its input space. Additionally, it is shown how this classification process' can be used to de-noise DQPSK communication signals