Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Analysis of the integrity of a single stud assembly with externally corroded nuts

Galloway, Alexander and Sutherland, Peter F. and Longhurst, Gary (2012) Analysis of the integrity of a single stud assembly with externally corroded nuts. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 226 (3). pp. 219-229. ISSN 1464-4207

[img] Microsoft Word
Galloway_AM_Pure_Analysis_of_the_integrity_of_a_single_stud_assembly_with_externally_corroded_nuts_May_2012.doc - Preprint

Download (96kB)

Abstract

The aim of this study was to determine whether a single 7/8” nominal diameter stud bolt and nuts assembly would fail to perform its required function in a flange assembly when the nut was corroded. This work was undertaken to form a basis for further work in development of a Fitness-For-Service (FFS) assessment for corroded nuts. No current quantitative assessments exist for this area. A failure criterion was defined as a minimum 206.8 MPa stress in the stud, based on the bolting requirements stated in ASME B16.5-2003 Pipe Flanges and Flanges Fittings. A simple test rig was manufactured for testing the compliance of the corroded nuts subjected to the 206.8 MPa stress level and the corrosion was simulated by removing uniform layers of material from the surface of the nut. Finite Element Analysis (ANSYS 12.0) was also performed to evaluate the test rig and to consider the interaction between the nut and stud at the thread roots. It was found that no failure occurred in the threading and that failure of the assembly only occurred when there was a >60% material loss from the nut. The failure mode experienced was deformation of the flange plate. This analysis proved that a nut can experience significant effective material loss without damaging the flange integrity.