Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A computational fluid dynamic analysis of the effect of side draughts and nozzle diameter on shielding gas coverage during gas metal arc welding

Ramsey, Gemma and Galloway, Alexander and McPherson, Norman and Campbell, Stuart and Scanlon, Thomas (2012) A computational fluid dynamic analysis of the effect of side draughts and nozzle diameter on shielding gas coverage during gas metal arc welding. Journal of Materials Processing Technology, 212 (8). pp. 1694-1699. ISSN 0924-0136

[img] PDF
Galloway_AM_Pure_A_computational_fluid_dynamic_analysis_of_the_effect_of_side_draughts_and_nozzle_diameter_on_shielding_gas_coverage_during_gas_metal_arc_welding_2012_2_.pdf - Preprint

Download (1MB)

Abstract

Extensive experimental trials were conducted, emulating the conditions modelled, in order to validate the computational fluid dynamic results. Final results demonstrated that a more constricted nozzle was more effective at creating a stable gas column when subjected to side draughts. Higher shielding gas flow rates further reduce the gas column's vulnerability to side draughts and thus create a more stable coverage. The results have highlighted potential economic benefits for draught free environments, in which, the shielding gas flow rate can effectively be reduced.