Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets

McKenna, Paul and Carroll, David and Coury, Mireille and Robinson, A.P.L. and Yuan, Xiaohui and Brenner, Ceri Mae and Burza, Matthias and Gray, Ross and Quinn, Mark and Neely, David and Tresca, Olivier and Lancaster, Kate and Li, YT and Lin, XX and Wahlstrom, CG (2012) Influence of laser irradiated spot size on energetic electron injection and proton acceleration in foil targets. Applied Physics Letters, 100 (7). ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The influence of irradiated spot size on laser energy coupling to electrons, and subsequently to protons, in the interaction of intense laser pulses with foil targets is investigated experimentally. Proton acceleration is characterized for laser intensities ranging from 2 x 10(18) - 6 x 10(20) W/cm(2), by (1) variation of the laser energy for a fixed irradiated spot size, and (2) by variation of the spot size for a fixed energy. At a given laser pulse intensity, the maximum proton energy is higher under defocus illumination compared to tight focus and the results are explained in terms of geometrical changes to the hot electron injection