Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Investigation of the mechanisms leading to the electrical breakdown of a triggered water gap

Saniei, M. and MacGregor, S.J. and Fouracre, R.A. (2003) Investigation of the mechanisms leading to the electrical breakdown of a triggered water gap. In: Proceedings from the Electrical Insulation and Dielectric Phenomena Conference, 2003. IEEE, pp. 734-737. ISBN 0-7803-7910-1

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The breakdown of a triggered, plane-parallel electrode system with water dielectric has been investigated. The gap was triggered by a discharge initiated at an electrically isolated trigger pin, positioned in the center of one of the electrodes, using a 500 ns voltage pulse. A 5000 fps CCD-camera monitored events occurring in the gap during such a discharge and the intensity variations of a laser beam transmitted through the electrode gap was also monitored. The results indicate the initiation, expansion and collapse of a gas bubble generated at the trigger electrode. The subsequent application of a voltage between the plane electrodes results in the complete breakdown of the gap due to the trigger discharge. The effect of a delay time between the trigger pulse and the application of the main gap voltage was consistent with the growth and collapse of the trigger-initiated bubble.