Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Investigation of the mechanisms leading to the electrical breakdown of a triggered water gap

Saniei, M. and MacGregor, S.J. and Fouracre, R.A. (2003) Investigation of the mechanisms leading to the electrical breakdown of a triggered water gap. In: Proceedings from the Electrical Insulation and Dielectric Phenomena Conference, 2003. IEEE, pp. 734-737. ISBN 0-7803-7910-1

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The breakdown of a triggered, plane-parallel electrode system with water dielectric has been investigated. The gap was triggered by a discharge initiated at an electrically isolated trigger pin, positioned in the center of one of the electrodes, using a 500 ns voltage pulse. A 5000 fps CCD-camera monitored events occurring in the gap during such a discharge and the intensity variations of a laser beam transmitted through the electrode gap was also monitored. The results indicate the initiation, expansion and collapse of a gas bubble generated at the trigger electrode. The subsequent application of a voltage between the plane electrodes results in the complete breakdown of the gap due to the trigger discharge. The effect of a delay time between the trigger pulse and the application of the main gap voltage was consistent with the growth and collapse of the trigger-initiated bubble.