Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

UHF diagnostic monitoring techniques for power transformers

Judd, M.D. and Yang, L. and Bennoch, C.J. and Hunter, Ian, B.B. (2004) UHF diagnostic monitoring techniques for power transformers. In: EPRI Substation Equipment Diagnostics Conference XII, 2004-02-15 - 2004-02-18.

[img]
Preview
PDF
dms_2.pdf - Final Published Version

Download (1MB) | Preview

Abstract

This paper initially gives an introduction to ultra-high frequency (UHF) partial discharge monitoring techniques and their application to gas insulated substations. Recent advances in the technique, covering its application to power transformers, are then discussed and illustrated by means of four site trials. Mounting and installation of the UHF sensors is described and measurements of electrical discharges inside transformers are presented in a range of formats, demonstrating the potential of the UHF method. A procedure for locating sources of electrical discharge is described and demonstrated by means of a practical example where a source of sparking on a tap changer lead was located to within 15 cm. Progress with the development of a prototype on-line monitoring and diagnostic system is reviewed and possible approaches to its utilization are discussed. New concepts for enhancing the capabilities of the UHF technique are presented, including the possibility of monitoring the internal mechanical integrity of plant. The research presented provides sufficient evidence to justify the installation of robust UHF sensors on transformer tanks to facilitate their monitoring if and when required during the service lifetime.