Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Gyrotorque transmission system for wind turbines

Jamieson, P. and Jegatheeson, M. and Leithead, W.E. (2004) Gyrotorque transmission system for wind turbines. In: Improvements in Drive Train Related Technology, 2004-03-29.

[img]
Preview
PDF
23_1400_peterjamieson_01.pdf - Final Published Version

Download (923kB) | Preview

Abstract

The GyroTorqueTM transmission system employs gyroscopic torque reaction to transmit power offering an alternative to the gearbox and electrical variable speed drive of a conventional wind turbine. The power transmission is fundamentally oscillatory and is rectified by mechanical elements. A precessing gyro maps speed to torque and, since the wind turbine rotor inertia strongly filters rotor speed variation, output power is insensitive to wind turbulence because it reflects wind turbine rotor speed variability rather than rotor torque variability. The GyroTorqueTM system has only bearing losses and potentially a high efficiency. Mechanical control of the input to the GyroTorqueTM system enables wide range variable speed operation of the wind turbine rotor using a conventional synchronous generator. At present, a 6 gyro system driven by an axial cam and connected to a conventional synchronous generator is the preferred system. Loads and power quality have been addressed with computer simulation models of the GyroTorqueTM system. Outline assessment of system mass and cost gives encouragement that it may be less than for conventional transmission systems.