Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Secondary distribution network power flow analysis

Thomson, M. and Infield, D.G. and Stokes, M. and Rylatt, M. and Mardaljevic, J. and Lomas, K. (2003) Secondary distribution network power flow analysis. In: 7th IASTED International Multi-Conference on Power and Energy Systems, 2003-02-24 - 2003-02-26.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Existing design methods for sizing conductors in secondary distribution networks (LV networks - typically below 500V) often employ Diversity Factors and rely heavily on a wealth of experience with similar networks and similar loads. The introduction of photovoltaic (PV) systems and micro co-generation (domestic combined heat and power: DCHP) will inevitably alter power flows in these networks, but since, at present, these distributed generators are few and far between, there is little data or experience on which to predict any effects they may have when widely installed. This paper describes on-going development of thorough and detailed modelling techniques, applicable to secondary distribution networks, using I-minute time-series data and accurate unbalanced power-flow analysis (load-flow). These modelling techniques will provide a sound basis for the consideration of micro distributed generators.