Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Optical filtering of solar radiation to increase performance of concentrator systems

Sabry, M. and Gottschalg, R. and Betts, T.R. and Shaltout, M.A.M. and Hassan, A.F. and El-Nicklawy, M.M. and Infield, D.G. (2002) Optical filtering of solar radiation to increase performance of concentrator systems. In: 29th IEEE Photovoltaic Specialists Conference, 2002-05-19 - 2002-05-24.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Solar cell overheating due to high irradiation levels is a significant problem facing concentrator systems. Some form of cooling is needed to maintain the highest possible performance of such systems. Liquid filters may be used to inhibit unwanted solar radiation from reaching the cell and thus limit cell-operating temperatures. The performance of the cooling will depend on the optical properties of the liquid filter applied, as illustrated in this paper on the basis of different filters. An ideal filter is identified and its effects on the systems are described. It is-shown, on the basis of system modeling calculations, that cell performance could be increased by up to 25% using an ideal filter. Such a system can reach an efficiency of 22% in a. realistic working environment compared to a STC value of 16%. The absorbed part of the incident radiation can be used as heat source, so adding to the potential initial value of the system.