Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Optical filtering of solar radiation to increase performance of concentrator systems

Sabry, M. and Gottschalg, R. and Betts, T.R. and Shaltout, M.A.M. and Hassan, A.F. and El-Nicklawy, M.M. and Infield, D.G. (2002) Optical filtering of solar radiation to increase performance of concentrator systems. In: 29th IEEE Photovoltaic Specialists Conference, 2002-05-19 - 2002-05-24.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Solar cell overheating due to high irradiation levels is a significant problem facing concentrator systems. Some form of cooling is needed to maintain the highest possible performance of such systems. Liquid filters may be used to inhibit unwanted solar radiation from reaching the cell and thus limit cell-operating temperatures. The performance of the cooling will depend on the optical properties of the liquid filter applied, as illustrated in this paper on the basis of different filters. An ideal filter is identified and its effects on the systems are described. It is-shown, on the basis of system modeling calculations, that cell performance could be increased by up to 25% using an ideal filter. Such a system can reach an efficiency of 22% in a. realistic working environment compared to a STC value of 16%. The absorbed part of the incident radiation can be used as heat source, so adding to the potential initial value of the system.