Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A blind synchronous multi-user DS-CDMA equaliser with partial loading

Hadef, M. and Weiss, S. (2004) A blind synchronous multi-user DS-CDMA equaliser with partial loading. In: First International Symposium on Control, Communications and Signal Processing, 2004-03-21 - 2004-03-24.

[img]
Preview
PDF
hadef04a.pdf - Final Published Version

Download (402kB) | Preview

Abstract

In this paper, we propose a blind multiuser detection scheme in a direct sequence CDMA downlink scenario by means of a chip-level equaliser, which can be updated even if not all possible users are active, i.e. the system is partially loaded. The active synchronous users are separated by re-establishing orthogonality of their spreading sequences in a common chip-level equaliser. The adaptation algorithm is mainly based on a constant modulus (CM) criterion applied to the active users. The inactive codes in the system must be considered, for which we proposed and compare three different methods: (i) a mean square error criterion for absent users, and a CM approach with (ii) zero modulus or (iii) the transmission of arbitrary signals with small code amplitude. For all three cases, stochastic gradient descent algorithms are derived. The proposed algorithms are analysed and compared through various simulations, which demonstrate the algorithms' convergence and BER performance.