Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cyclic J integral using linear matching method

Chen, Weihang and Chen, Haofeng (2012) Cyclic J integral using linear matching method. In: 13th International Conference on Pressure Vessel Technology, 2012-05-20 - 2012-05-23.

[img]
Preview
PDF
Chen_HF_Pure_Cyclic_J_Integral_Using_Linear_Matching_Method.pdf - Preprint

Download (609kB) | Preview

Abstract

The extended version of the latest Linear Matching Method (LMM) has the capability to evaluate the stable cyclic response, which produces cyclic stresses, residual stresses and plastic strain ranges for the low cycle fatigue assessment with cyclic load history. The objective of this study is to calculate ΔJ through the LMM and suggest future development directions. The derivation of the ΔJ based on the potential energy expression for a single edge cracked plate subjected to cyclic uniaxial loading condition using LMM is presented. To extend the analysis so that it can be incorporated to other plasticity models, material Ramberg-Osgood hardening constants are also adopted. The results of the proposed model have been compared to the ones obtained from Reference Stress Method (RSM) for a single edge cracked plate and they indicate that the estimates provide a relatively easy method for estimating ΔJ for describing the crack growth rate behaviour by considering the complete accumulated cycle effects.