Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Electronic differential with sliding mode controller for a direct wheel drive electric vehicle

Gair, S. and Cruden, A.J. and Cruden, Andrew and McDonald, J. and Hredzak, B. (2004) Electronic differential with sliding mode controller for a direct wheel drive electric vehicle. In: IEEE International Conference on Mechatronics (ICM 2004), 2004-06-03 - 2004-06-05.

Full text not available in this repository. (Request a copy from the Strathclyde author)


Traction drives used in electric vehicles can be divided into two categories, (i) single drive systems, and (ii) multi-drive systems. With multi-drive systems the motor controllers must additionally be configured to provide an electronic differential effect i.e. they must also perform a similar function as their mechanical differential counterpart. Thus the electronic differential must take account of the speed difference between the two wheels when cornering. This paper presents a design for an electronic differential utilising a sliding mode controller employing a 4-switch 3-phase inverter. This type of inverter is particularly suitable for this application as the supply batteries can be easily split into two separate battery strings. The system is evaluated on a test vehicle in which the rear wheels are directly driven by permanent magnet brushless motors. Results indicate that this arrangement can be successfully implemented into an electric vehicle drive train.