Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Electronic differential with sliding mode controller for a direct wheel drive electric vehicle

Gair, S. and Cruden, A.J. and Cruden, Andrew and McDonald, J. and Hredzak, B. (2004) Electronic differential with sliding mode controller for a direct wheel drive electric vehicle. In: IEEE International Conference on Mechatronics (ICM 2004), 2004-06-03 - 2004-06-05.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Traction drives used in electric vehicles can be divided into two categories, (i) single drive systems, and (ii) multi-drive systems. With multi-drive systems the motor controllers must additionally be configured to provide an electronic differential effect i.e. they must also perform a similar function as their mechanical differential counterpart. Thus the electronic differential must take account of the speed difference between the two wheels when cornering. This paper presents a design for an electronic differential utilising a sliding mode controller employing a 4-switch 3-phase inverter. This type of inverter is particularly suitable for this application as the supply batteries can be easily split into two separate battery strings. The system is evaluated on a test vehicle in which the rear wheels are directly driven by permanent magnet brushless motors. Results indicate that this arrangement can be successfully implemented into an electric vehicle drive train.