Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number

Dadzie, Kokou and Reese, Jason (2012) Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number. Physical Review E, 85 (4). ISSN 1539-3755

[img] PDF
Reese_JM_Pure_Analysis_of_the_thermomechanical_inconsistency_of_some_extended_hydrodynamic_models..._March2012.pdf - Draft Version

Download (110kB)

Abstract

There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics.