Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Chemoinformatics-based classification of prohibited substances employed for doping in sport

Cannon, E. O. and Bender, A. and Palmer, D. S. and Mitchell, J. B. (2006) Chemoinformatics-based classification of prohibited substances employed for doping in sport. Journal of Chemical Information and Modeling, 46 (6). pp. 2369-2380.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Representative molecules from 10 classes of prohibited substances were taken from the World Anti-Doping Agency (WADA) list, augmented by molecules from corresponding activity classes found in the MDDR database. Together with some explicitly allowed compounds, these formed a set of 5245 molecules. Five types of fingerprints were calculated for these substances. The random forest classification method was used to predict membership of each prohibited class on the basis of each type of fingerprint, using 5-fold cross-validation. We also used a k-nearest neighbors (kNN) approach, which worked well for the smallest values of k. The most successful classifiers are based on Unity 2D fingerprints and give very similar Matthews correlation coefficients of 0.836 (kNN) and 0.829 (random forest). The kNN classifiers tend to give a higher recall of positives at the expense of lower precision. A naïve Bayesian classifier, however, lies much further toward the extreme of high recall and low precision. Our results suggest that it will be possible to produce a reliable and quantitative assignment of membership or otherwise of each class of prohibited substances. This should aid the fight against the use of bioactive novel compounds as doping agents, while also protecting athletes against unjust disqualification.