Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Initial stage of cheese production: a molecular modeling study of bovine and camel chymosin complexed with peptides from the chymosin-sensitive region of kappa-casein

Sørensen, J. and Palmer, D. S. and Qvist, K. B. and Schiøtt, B. (2011) Initial stage of cheese production: a molecular modeling study of bovine and camel chymosin complexed with peptides from the chymosin-sensitive region of kappa-casein. Journal of Agricultural and Food Chemistry, 59 (10). pp. 5636-5647.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bovine chymosin has long been the preferred enzyme used to coagulate cow's milk, in the initial stage of cheese production, during which it cleaves a specific bond in the milk protein kappa-casein. Recently, camel chymosin has been shown to have a 70% higher clotting activity toward cow's milk and, moreover, to cleave kappa-casein more selectively. Bovine chymosin, on the other hand, is a poor clotting agent toward camel's milk. This paper reports a molecular modeling study aimed at understanding this disparity, based on homology modeling and molecular dynamics simulations using peptide fragments of kappa-casein from cow and camel in both bovine and camel chymosin. The results show that the complex between bovine chymosin and the fragment of camel kappa-casein is indeed less stable in the binding pocket. The results also indicate that this in part may be due to charge repulsion between a lysine residue in bovine chymosin and an arginine residue in the P4 position of camel kappa-casein.