Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Predicting intrinsic aqueous solubility by a thermodynamic cycle

Palmer, D. S. and Llinas, A. and Morao, I. and Day, G. M. and Goodman, J. M. and Glen, R. C. and Mitchell, J. B. (2008) Predicting intrinsic aqueous solubility by a thermodynamic cycle. Molecular Pharmacology, 5 (2). pp. 266-279.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report methods to predict the intrinsic aqueous solubility of crystalline organic molecules from two different thermodynamic cycles. We find that direct computation of solubility, via ab initio calculation of thermodynamic quantities at an affordable level of theory, cannot deliver the required accuracy. Therefore, we have turned to a mixture of direct computation and informatics, using the calculated thermodynamic properties, along with a few other key descriptors, in regression models. The prediction of log intrinsic solubility (referred to mol/L) by a three-variable linear regression equation gave r(2)=0.77 and RMSE=0.71 for an external test set comprising drug molecules. The model includes a calculated crystal lattice energy which provides a computational method to account for the interactions in the solid state. We suggest that it is not necessary to know the polymorphic form prior to prediction. Furthermore, the method developed here may be applicable to other solid-state systems such as salts or cocrystals.