Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P

Hughes, L. D. and Palmer, D. S. and Nigsch, F. and Mitchell, J. B. (2008) Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P. Journal of Chemical Information and Modeling, 48 (1). pp. 220-232.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper attempts to elucidate differences in QSPR models of aqueous solubility (Log S), melting point (Tm), and octanol-water partition coefficient (Log P), three properties of pharmaceutical interest. For all three properties, Support Vector Machine models using 2D and 3D descriptors calculated in the Molecular Operating Environment were the best models. Octanol-water partition coefficient was the easiest property to predict, as indicated by the RMSE of the external test set and the coefficient of determination (RMSE = 0.73, r2 = 0.87). Melting point prediction, on the other hand, was the most difficult (RMSE = 52.8 degrees C, r2 = 0.46), and Log S statistics were intermediate between melting point and Log P prediction (RMSE = 0.900, r2 = 0.79). The data imply that for all three properties the lack of measured values at the extremes is a significant source of error. This source, however, does not entirely explain the poor melting point prediction, and we suggest that deficiencies in descriptors used in melting point prediction contribute significantly to the prediction errors.