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Abstract - The aim of this paper is to evaluate the ap-
plication of time-frequency (TF) transforms and sup-
port vector machines (SVM) to transient evoked otoa-
coustic emissions (TEOAE) in order to achieve a de-
tection of frequency-specific hearing loss. We intro-
duce a system to determine detection rates between
groups of persons with normal hearing, high frequency
hearing loss, and pantonal hearing loss. The validity
and use of our approach is verified on a different pa-
tient group.

I. INTRODUCTION

Transient evoked otoacoustic emissions (TEOAE) are used
as a clinical standard procedure to detect cochlear hear-
ing loss [1], and measurement equipment [2] is widely
available in hospitals. The analysis of TEOAE is usually
performed by an human expert. Recently, signal process-
ing detection systems aiming at an automated detection
of cochlear hearing loss have been motivated to assist or
replace the human expert. These studies aiming at de-
tection of TEOAE apply discrete wavelet transform and
neural networks [3],[4]. Here, we introduce a system ap-
plying various time-frequency (TF) transforms for fea-
ture extraction, a signal-to-noise (SNR)-like criterion for
feature selection and support vector machines for classi-
fication.

Fig. 1 gives an overview of our system. For the fea-
ture extraction, TF transforms, namely the discrete wavelet
transform (DWT), wavelet packets (WP) and Gabor frames
transform (GF) are applied. To select the features of the
data, an SNR-like criterion is applied to the transformed
data resulting in a reduction of coefficients to be used for
classification and aiming at a reduction of noisy coeffi-
cients. This approach will be outlined in more detail in
Sec. III, following a description of TEOAE data and TF
transforms in Sec. II. The classification of the data is con-
ducted by a support vector machine (SVM) classifier ex-
plained in Sec. VI more explicitly. In Sec. V, based on
the training data, a support vector classification network

TF coefficients for training
TF coefficients for test

Training data Feature selection:
Selection of coefficients 

Classification: Trained SVM classifier
Detection rates for test dataTest data

Feature extraction:
Support vector machinesby SNR−like criterionTime−frequency transforms

Fig. 1. Overview of the detection system for cochlear hearing loss.

is found and applied to the test data group yielding detec-
tion rates which describe the performance of the system
and can be compared with other studies. Finally, Sec. VI
draws the conclusions.

II. TEOAE AND TF TRANSFORMS

The patient data consists of two sets measured at the Uni-
versities of Homburg and Heidelberg, with each consist-
ing of an evaluation of more than 200 ears. The Homburg
data represents the training data, the Heidelberg data is
addressed as test data. Both sets are classified to one of
the three groups of normal hearing (NH), pantonal (PT),
or high frequency (HF) hearing loss, as defined in Fig. 2.
For each ear, the TEOAE equipment measured a total of
520 responses, each for a period of 20.48 ms, and calcu-
lated two partial averages (labelled A and B) alternatingly
over 260 responses each.

Due to the transient nature of the signals, previous
work on the qualitative analysis of TEOAE has focused
on time-frequency (TF) methods, such as filter banks [5],
matching pursuit [6], or the DWT [3], whereby a quanti-
tative study w.r.t. the achievable distinction of frequency-
specific hearing loss has been performed in [3], based on
the DWT. Here, we aim to broaden and improve these
methods by considering a range of transformation meth-
ods, namely the DWT, WP and GF.

The DWT is a fixed transform based on a “mother
wavelet” from which the transformation coefficients are
derived by scaling, translation and sampling. Here, we
have chosen the Mallat wavelet for which good results
have been reported in similar studies [3]. The transform
coefficients approximately cover TF tiles as illustrated in
Fig. 2 (left).

The WP transform is an adaptive transformation sim-
ilar to the DWT but with a flexible partitioning of the
TF plane which therefore can be seen as a more general
transform compared to the DWT. The advantage of this
approach compared to the DWT is that the entropy of the
transformed data shall be minimised through variable lev-
els of decomposition such that the energy is concentrated
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Fig. 2. Characterisation of hearing loss (HL) for (left) normal hearing, (middle) pantonal HL, and (right) high frequency
HL.

in as few coefficients as possible. That minimisation is
achieved by the reduction of the concentration according
to Shannon’s entropy [7]. Fig. 2 (middle) shows a sample
WP decomposition.

The GF decomposition yields a uniform tiling of the
TF plane and hence can provide a desired resolution in a
specific TF segment, see e.g. Fig. 2 (right). It is based
on an oversampled filter bank with a flexible number of
channels constructed according to [8], whereby the chan-
nel number is again selected in order to minimise the
transform coefficients’ entropy when applied to TEOAE
data. All transformations are operating on finite length
EEG segments and are implemented with symmetric bound-
ary extensions [9].

Based on a parameterisation of the data by the TF
transforms, representing the feature extraction of the data,
the application of an SNR-like criterion for the feature se-
lection is conducted which will be described next.

III. FEATURE SELECTION

To quantify and exploit differences in the TEOAE TF co-
efficients of the three groups of hearing ability within the
Homburg data, a signal-to-noise-ratio (SNR) based cri-
terion is invoked. First, the SNR is estimated for each of
the 512 parameters in the TF-plane based on the TF trans-
forms of the two partial averages, CA,i(n) and CB,i(n),
n = 1, . . . , 512, i = {DWT, WP, GF}. The SNR of the
nth coefficient is (coarsely) estimated by comparing the
sum and the difference obtained from the partial averages
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Fig. 3. TF tiling comparison between a DWT (left), a sample WP (middle) and a sample GF (right) decomposition.

A and B:

SNR(n) = 20 log10

|CA,i(n) + CB,i(n)|

|CA,i(n) − CB,i(n)| + ε
. (1)

with ε being a small constant. This SNR is calculated for
all measurements, and for each of the 512 TF coefficients
within each of the three hearing ability groups, the distri-
bution is recorded. The SNR value of a TF coefficient
is used to evaluate the separability of any two groups
with different hearing status. The separability can be as-
sessed independent of the selection of a specific threshold
by means of a socalled receiver operating characteristic
(ROC) curve. The area underneath the ROC is a measure
for the separability of both groups, and independent of
the definition of SNR-thresholds [10].

As single WP coefficients yield a poor separability
between any two groups, we pick the coefficient that gives
the best separable SNR according to (1) as a starting value
and iteratively grow a coefficient set G to improve sep-
arability. Further coefficients are added to G from the
neighbourhood of surrounding coefficients. Adjacency is
defined by edge and corner connections in the TF plane.
The iteration is stopped when the ROC does not further
improve for the SNR of the coefficients contained in G.
To broaden the search algorithm, also the second largest
coefficient is selected as a starting value for the search
procedure; moreover, the neighbourhood search is broad-
ened by including the adjacent coefficients to the ones
described previously. The reason is that by this general-
isation an improvement of the separability results is ex-



pected.

IV. SVM CLASSIFICATION

In the following, we briefly explain SVM, [11],[12]. We
consider a three class classification problem for the classes
defined by the groups NH, HF and PT, starting with an
explanation for a two class classification. The training
data originates from the Homburg data, while the test data
comprises the Heidelberg measurements.

The training data is described as a set of training vec-
tors {pi}i=1 ... M with corresponding binary labels Si =
1 for the one class, e.g. NH, and Si = −1 for the second
class, e.g. HF. The SVM conducts a classification of a
test vector t by assigning a label Ŝ by calculating

Ŝ = sign(f(t)) with f(t) =
∑

i

αiSiK(t,pi)+b.

(2)
The αi are called weights and b is the bias, which are
SVM parameters and adopted during training by max-
imising

LD =
∑

i

αi −
1

2

∑

i,j

αiαjSiSjK(pi,pj) (3)

under the constraints

0 ≤ αi ≤ C and
∑

i

αiSi = 0 (4)

with C being a positive constant which weighs the in-
fluence of training errors. K(·, ·) is called kernel of the
SVM. If there is a solution for αi, a value for b is deter-
mined. Usually αi = 0 for the majority of i and thus
the summation in (2) is limited to a subnet of the pi,
which therefore is called the set of support vectors. There
are several commonly used kernels for SVM, which give
some flexibility for the underlying application. Many im-
plementations of kernels can be found in literature, whereby
two popular ones are Gaussian and polynomial kernels. If
K(·, ·) is positive definite, (3) and (4) is a convex quadratic
optimisation problem, which converges towards the global
optimum assuringly. This optimisation can be quite de-
manding in terms of computation time for real-world prob-
lems, and therefore, sophisticated algorithms like sequen-
tial minimal optimisation (SMO) [11] are used for the so-
lution.

To find a significant value for the training error C,
a leave-one-out (l-o-o) estimation of the error rate is ap-
plied as follows: From the training samples, remove the
first example. Train the SVM on the remaining samples.
Then test the removed example. If the example is clas-
sified incorrectly, it is said to produce a leave-one-out
error. In [11], an approach to estimate the maximum l-
o-o error is shown avoiding training the SVM more than
once, which is also used for our study. By changing the
value for C stepwise, the minimum for the l-o-o error is
found determining the SVM classification network. For
our application, a Gaussian kernel was used.

So far, we have described the SVM for only two classes.
As we aim at distinguishing 3, we need to define a multi-
class method. In [13] a decision directed acyclic graph

(DAG) for multi-class SVM is introduced. It is based on
an 1-vs-1 classification where the training is conducted
for all possible combinations of the classes. Based on a
trained SVM classifier for each possible class combina-
tion, a binary acyclic graph is used for testing. Fig. 4
shows the decision DAGSVM for our application to the
the three classes with different hearing ability.

NH vs HF

Not NH

NH vs PT

HF vs PT

Not PT

HF PTNH

Fig. 4. DAGSVM for TEOAE.

V. RESULTS AND DISCUSSION

Having described the detection methods and the data used
for our system, we present the results in the following.
For each transform method and based on the selected co-
efficient sets, a SVM classification is conducted for each
distinction case using the training data. The test data is
analysed by the determined classifiers according to the
decision DAG in Fig. 4 yielding the detection rates in
Tab. 1 for each class for each parameterisation method.

detection rates for test data
group DWT WP GF
NH 79.7% 68.1% 91.3%
HF 63.2% 74.7% 63.2%
PT 69.3% 56.4% 53.9%

Tab. 1. Detection rates yielded by DAGSVM.

The table shows that the DWT yields the best overall
results. The HF can be detected most significantly with
the WP. The PT group is the most difficult to determine,
just above half of the patients can be allocated correctly
for the WP and GF. These results may not seem to be
encouraging. However, when only considering the the
case NH vs PT, the following results are obtained:

• DWT: NH 91.3%, PT 89.7%,

• WP: NH 89.9%, PT 84.6%

• GF: NH 99%, PT 84.6%,

which is well in the range of other studies.
E.g in [14], a group of normal hearing is defined by

no hearing loss up to 30 dB and a hearing impaired group
with a hearing loss over 30 dB. A separation method based
on wavelet transforms, ensemble correlation, time win-
dow design and mean cross-correlation is introduced. The



study concludes that by standard analysis 90% of the nor-
mal hearing persons and 65% of the hearing impaired pa-
tients can be allocated correctly. By applying the vari-
ous methods, the value for the hearing impaired group
is increased by approximately 17% to 83% in that study.
Compared to our study we achieve slightly better results
when only considering the case NH vs PT, which can be
seen as equivalent to the case shown in [14]. One could
also argue, that our methods lead to a better separation of
hearing loss as our threshold for defining the difference
between NH and PT was 20 dB, and the worse the hear-
ing loss gets, the weaker the TEOAE appear and there-
fore the easier it should be to separate them. On the other
hand, we achieve the lowest value of 53.9% for the PT
group, which shows that it is easier to separate when clear
TEOAE are present, which is more likely the case for a
threshold of hearing loss of 20 dB than for 30 dB. Reca-
pitulating it can be said that our approach yields separa-
tion results than can well compete with other studies so
far.

VI. CONCLUSIONS

We have presented a TF analysis of TEOAE that aims
at the detection of frequency specific hearing loss. We
have motivated the use of TF methods, and proposed a
method to optimise a set of distinctive TF coefficients.
This maximisation represents the input to a SVM classi-
fier for the detection. We used two data sets for training
and testing. The validity of the results was verified by a
test group. Moreover, the obtained results proved to be
competitive when they were compared to similar study
which also aims at the detection of TEOAE. Therefore,
the results appear reasonably robust and encourage fre-
quency specific hearing loss detection via signal process-
ing of TEOAE.
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