Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The use of chirp overlapping properties for improved target resolution in an ultrasonic ranging system

Devaud, F. and Hayward, G. and Soraghan, J.J. (2004) The use of chirp overlapping properties for improved target resolution in an ultrasonic ranging system. In: 2004 IEEE Ultrasonics Symposium, 2004-08-23 - 2004-08-27.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The ability of many bat species to navigate, identify and capture prey has interested scientists for many years. It is known that bats possess extremely sophisticated echo location capabilities utilising chirp sequencing allied with an adaptive antenna system that enables extremely high resolution in 3-D space. One particularly interesting aspect is that bats appear to resolve and locate targets with scattering dimensions less than the wavelength of the emitted signals. They can identify the target shape by resolving multiple and closely reflecting points along the range axis. Properly harnessed, such techniques could possess significant potential for ultrasonic imaging. The feasibility of applying one aspect of bat behaviour, namely the use of overlapping frequency modulated signals to achieve improved ultrasonic image resolution, is investigated in this work. A one dimensional model is used to simulate the behaviour of a simple, layered ultrasonic system. The fundamental theory is based on the use of temporal and frequency information and improved resolution is demonstrated by resolving the resultant interference patterns in the frequency domain.