Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Developing GA-based hybrid approaches for a real-world mixed-integer scheduling problem

Dahal, K. and Galloway, S.J. and Aldridge, C. (2003) Developing GA-based hybrid approaches for a real-world mixed-integer scheduling problem. In: Congress on Evolutionary Computation (CEC), 2003-12-08 - 2003-12-12.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Many real-world scheduling problems are suited to a mixed-integer formulation. The solution of these problems involves the determination of integer and continuous variables at each time interval of the scheduling period. The solution procedure requires simultaneous consideration of these two types of variables. In recent years researchers have focused much attention on developing new hybrid approaches using modern heuristic and traditional exact methods. This paper proposes the development of a variety of hybrid approaches that combines heuristics and mathematical programming within a genetic algorithm (GA) framework for a real-world mixed integer scheduling problem, namely the generation scheduling (GS) problem in electrical power systems. The problem is to define on/off decisions and generation levels for each generator in a power system for each scheduling interval. This paper investigates how the optimum or near optimum solution for the GS problem may be quickly identified. The results obtained are promising and show that the hybrid approach offers an effective alternative for solving the GS problems within a realistic timeframe.