Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Strategies and challenges involved in the discovry of new chemical entities during early-stage tuberculosis drug discovery

Coxon, Geoffrey (2012) Strategies and challenges involved in the discovry of new chemical entities during early-stage tuberculosis drug discovery. In: Tuberculosis: Local and global, 2012-03-23.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

There is an increasing flow of new antituberculosis chemical entities entering the tuberculosis drug development pipeline. Although this is encouraging, the current number of compounds is too low to meet the demanding criteria required for registration, shorten treatment duration, treat drug-resistant infection, and address pediatric tuberculosis cases. More new chemical entities are needed urgently to supplement the pipeline and ensure that more drugs and regimens enter clinical practice. Most drug discovery projects under way exploit enzyme systems deemed essential in a specific Mycobacterium tuberculosis biosynthetic pathway or develop chemical scaffolds identified by phenotypic screening of compound libraries, specific pharmacophores or chemical clusters, and natural products. Because the development of a compound for treating tuberculosis is even longer than for treating other infection indications, the identification of selective, potent, and safe chemical entities early in the drug development process is essential to ensure that the pipeline is filled with new candidates that have the best chance to reach the clinic.