Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Co-ordinated voltage control strategy for a doubly-fed induction generator (DFIG)-based wind farm

Cartwright, P. and Holdsworth, L. and Ekanayake, J. and Jenkins, Nick (2004) Co-ordinated voltage control strategy for a doubly-fed induction generator (DFIG)-based wind farm. In: IEE Generation, Transmission and Distribution 2004, 2004-07-11.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The penetration of wind power into electricity networks is increasing and many large wind farms use doubly-fed induction generator (DFIG) based wind turbines. A voltage control strategy for a DFIG-based wind farm is essential for compliance with some wind farm connection requirements. Such a control strategy may also have commercial benefits. This paper presents a voltage control strategy and illustrates the advantages of this methodology when applied to a DFIG implemented wind farm connected either to a transmission system or embedded within a distribution system. Dynamic linear time invariant models of the DFIG including its associated voltage source convertor and controllers are derived in the synchronous d-q reference frame. In addition, the local on-load tap changer is modelled as a finite state machine and the co-ordinated controllers for both systems are described. Simulation results are presented to illustrate the effectiveness of the controllers within both a transmission system and a distribution system.