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ABSTRACT to have a system that can find an equaliser as quickly as pos-
R'::ible. Secondly, the adaptive inversion can consume a large
amount of computational power, which may be at a premium
in a MS, so again we are motivated to create a system which
can quickly invert the MIMO system to create an equaliser,

explains the criteria of these inversions and comparesdhe p and to keep the complexity of this system as low as possible.

formances in terms of MSE between the input and output to Itis We”"‘”OWT‘ It(Tat adﬁpnvehalgorllthmsdsu%h as ::ILMS
a concatenated channel-equaliser system through use-of siffn converge quickly to short channels and where the input

ulations, and puts these results into context in terms of-cor'r‘lSlgnal to the algorlthm is spectrally flat. An adaptlve FIR
putational cost, system to identify an unknown MIMO channel is generally

shorter than the system to invert it, and also in the ideatific

tion set-up the input signal can be chosen to be white. This

1. INTRODUCTION is not the case for the adaptive inversion set-up where the
. — _ algorithm input is coloured by the frequency-selectivercha

In recent years, theor_etlcal and p_ractlcal investigatioaee nel. Hence, we propose that we can adaptively identify the
shown that it is possible to realise enormous channel “&inknown MIMO system, and then analytically invert it at the

pacities, far in excess of the point-to-poil_’]t papacity give receiver. In this paper, we will assume the MIMO channel
by the Shgnnon-HartIey law [1]. The majority of work to is known from a previous identification, and we look at tech-
date on this area has assumed flat sub-channels composl'tﬁglueS to analytically invert it

the multiple-input multiple-output (MIMO) channel. As the Section 2 outlines the system model used in this paper.
aim of MIMO systems is often to increase the data transmis-SeC,[iOn 3 shows an zero-forcing (ZF) MIMO inversion and
sion rate of a communication system, a wideband and hencS

hiahly time-di . del Id it Sabilisation technique which give an IIR equaliser, while
'ghly ime-gispersive model wolld Seem more appropriateg inn 4 shows a time-domain method for finding a MMSE

To properly exploit this environment to realise these capace g MiMo equaliser. Section 5 outlines a frequency-domain

ity increases, the M_IMO channel must be equalised for bo“f‘nethod for finding a FIR MIMO equaliser, which although
the cross-channel interference (CCI) between MIMO SUbéub-optimal can be calculated at a significantly lower com-

channels and the inter-symbol interference (ISl) inhetent eputational cost that the other methods, and shows how to

broadba}nd channels, so that t.he performgnce of any syst. ®mbat circular convolution effect inherent to this method
attempting to harness the multipath diversity can do soawhil Section 6 shows simulation performance results for theethre

maintaining a satisfactory bit error rate (BER) perform&anc methods applied to three MIMO channels with differing

Creating a system that performs quallsat_mn with a satisfa characteristics, and Section 7 draws conclusions.
tory performance for a highly time-dispersive MIMO system

is far from a simple task.

Generally, creating an equaliser will require inverting th 2. SYSTEM MODEL
system. One such technique is by adaptive inversion of the
MIMO system [2]. While this technique results in a satisfac-In the following section we will be calculating the channel
tory MIMO equaliser for recovering signals passed throughnverse in three different domains, and therefore the bl
extremely hostile highly frequency-selective systems th must be also formulated in these domains. We now express
adaptation is still slow, requiring tens of thousands of-northe system model in a domain-independent representation,
malised least mean squared (NLMS) algorithm iterations beso that we can use this as a base to convert to the required
fore the adaptive systems converges to an acceptably lodomain in the following sections.
mean squared error (MSE). If the channel has a sufficiently The output of the MIMO channel is given by
high coherence time then this will not cause any problems,
however for fast moving mobile stations (MS) it is desirable y=Hx+v, Q)

This paper discusses MIMO equalisers created by analyt
inversion of a known frequency-selective MIMO channel. It
considers inversion performed in thedomain, time-domain

using convolutional matrices, and the frequency-domain. |
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Fig. 1. Schematic of a known MIMO channel and a MIMO whereaq is the reciprocal of the pole, and taking care to deal
equaliser shown in three different domains. with multiple co-located poles correctly. We now truncate
this at an appropriate value farwherea™ has decayed to a
suitably small value, and introduce a delay to make the sys-

wherey is a vector of output signals from the known MIMO tem causal. This forms the basis for a delayed causal stable

channel H, corrupted by AWGNv, andx is a vector of the FIR approximation of an unstable IIR system
input signals. The structures of these variables are uretkfin While this works well in theory, in pra.ctice an ill-
at this point as they depend on the representation domain, .. ' .
Figure 1 shows this system in combination with a suitablecondltlon'Ed MII\/_IO_syst_em where_ the determinants have
MIMO equaliserG. roots near_the unit C|rcl_e_|n t_hedomaln can cause fatal prob-
lems. During the stabilisation process we need to calculate
the roots of the determinant polynomial, but this operation
3. z-DOMAIN INVERSION is very prone to finite accuracy round-off errors during com-
putation. After the stabilisation operations on the robs t
, : ) , mpolynomial must be reconstructed and the small inaccusacie
is to express the problem in thedomain and algebraically iy, the root-finding operation are magnified so that previpus|
invert the MIMO matrix. In general, this will resultin an lIR - giah16 parts of the determinant close to but inside the unit
system, and although the method is very simple and can leggje have now migrated to outside the unit circle and have
to an excellent solution in some cases, it can also lead 10 g8 .o me unstable. The only obvious solution to this is to in-

unstable solution. Whilst we can use a technique to Stabms@rease the machine accuracy so that the roots can be accu-
the unstable parts of the IIR system, other problems arise ijately found.

the problem is ill-conditioned that cannot be easily solved
We start by expressing the MIMO system matrix in the

A simple method to calculate the inverse of a MIMO syste

If the determinant can be guaranteed to be minimum phase
we can cut out the stabilisation process and thdbomain

z-domain method not only works very well, but has a low computa-
hi(z) -+ han(2) tional complexity ofO(Ly, log, Ly,) for a MIMO system of
H(z) = : : @) fixed dimensions, assuming the convolutions in the calcula-
: ’ tion of H(z)H(z) in the determinant are performed using
hip(z) -- hap(2) FFTs. If the determinant is non-minimum phase and there are

no determinant roots near the unit circle good performance
is still possible using the stabilisation process, althotige
gmputational complexity becoméy(L3 ).

In a low noise environment where the determinant of the
channel has no roots near the unit circle, thidomain tech-
niqgue can work very well and quickly. Unfortunately, we
cannot usually guarantee that the determinant will eitlger b

G(2)H(z) = Z*dI7 (3) minimum phase, or have no roots near the unit circle when it
is non-minimum phase, and so this method is unsuitable for
which results in the zero-forcing solution. The inve(s€z)  the equalisation of MIMO systems in general. Also, the ZF
is given by solution will generally not exhibit favourable behavioara
A 15 noisy environment, and the calculation of an MMSE solution
G(2) = ("H(2)H(2))""H(2), ) in the z-domain is very complicated [4].

whereh,,, (2) = hpp(0)2° + hpp(1) 271+ +
hp(Lp+1)z=En 1 andLy, is the length of the MIMO chan-
nel impulse response. Hence the system function becomé&
yv(z) = H(2)x(z) + v(z), and the elements of the vectors
and matrix are all functions in. The inverse criterion can
now be expressed

whereH is the parahermitian oH [3].

The inversion off{(z)H(z) can be found using the stan- 4. TIME-DOMAIN INVERSION
dard Gaussian algebraic elimination method, where we per-
form row operations on the polynomials inin the same We may represent the time-dispersiveness of the MIMO sys-
way as if they where scalars. The inverse is stable ifem in the time-domain where the impulse response of each
det(H(z)H(z)) is minimum phase. Problems arise when thesub-channel forming the MIMO system are arranged into a
determinant is non-minimum phase and therefore we mustonvolutional matrix. Each sub-channel has its own convo-
use a stabilisation technique where we express the determistional matrix and all of these matrices are augmented and
nant polynomial in terms of its roots. The roots with a mag-stacked to produce a large parent MIMO convolutional ma-
nitude less than one can be reconstructed into a stable llRix [2,5, 6]. The convolution matrix for the sub-channet be



tween transmittem and receivep is given by greater computational complexity for the equaliser caleul
tion.

hi, - - 0 0 While the method usually works well, the complexity can
0 hf ... . 0 become large very quickly with an ingreasinlg, due_ to
H,, = e _ ~ |, (6) the fact that this causes both dimensionsHy,.. to in-
0 0 - : crease. After some algebraic development the complexity
0 0o - hi .. with respect tal, involved in calculatingg,Vm € 1 : M
) can be shown to b&(L?). Notice that this is greater than
wherehy, = [hip[0] -+ hmp[Ly — 1]]7 is the sub-  the ©(L3) of the z-domain method, as generally we choose
channel impulse response. We may construct a parent cop; - 1,,. From this we see that it is beneficial for compu-
volutional matrixH over allm andp, yielding tational simplicity to keepl, as low as possible while still
achieving satisfactory performance. Alternatively we may
Hy Hyo-o Han seek a lower complexity method
H12 H22 e HZ\/IZ '
Hconv = . . . . ) (7)
1 1 B 1 5. FREQUENCY-DOMAIN INVERSION
Hip Hop -+ Hpyp

We may arrange for the impulse responses of the sub-
channels to be transformed into their spectral representa-
tions, and hence formulate the problem in the frequency do-
. main. In this case the elements of the MIMO channel matrix
Whefex IS a_lengthM(Lh + Ly —1) stacked VeCtor repre- 4o functions of frequency, as are the elements,af and
senting the mput. to the MIMO system«, is a lengthPL . Hence we have the frequency-domain system function
vector representing AWGN ang is a lengthPL, vector (f) = H(f)x(f)+v(f). We may use the FFT to obtain the
representing the output. Note that both the varying natur equency-domain representations of the time-domain sig-
of the signals in time and the multiple inputs/output are 'ePhals. The main advantage of processing the problem in the
resented in one dimension in the input, output and noise Ve(ffequency—domain is that the inversion B becomes very
tors. To find the MIMO equaliser we must obtain a Ma-gimole as we may now deal itk scalar valued MIMO ma-

trix G so that after a signal is passed through the chang; f h f bin which ind dent. wh
nel and equaliser, there should ideally only be a delay. W jiceS Jor each frequency bin Wiich are indepencent, where

ndG using th ok Wei Hopf solution 7 % in the number of frequency bins of the FFT, and invert
may fin using the well-known Weiner-Hopf solution [7], each matrix using the standard algebraic method. We use the

whereH,,,, is of dimensions?L, x M (L, + L, — 1) and
L, is the chosen length of the MISO equaliser filters. Us
ing this we create a transmission mogek H oy x + v,

_ —1 _ H H H 1H
gm = R Pm Wheregm - [gml Zm2 IglmP] pseudo_inverse
andg,,, = [gmp[o} gmp[l] gmp[Lg — 1]]%. Af-
ter some mathematical development we can calculate that —iom -1
P G[f] = e~ (W [fH]f) " B[], (10)

R = 02H o HZ  + 021, assuming that all the input vari-

conv

ances and noise powers are the same, wigie the power wheree—727#4 is ad symbol delay in the columns to make

of the input signakr[n] ando; is the power of the noise[n]  the non-causal part of the response realisable. After we hav
at each receiver. Also, we can shown tpgf = Heonvdim,  calculatedG [f] we simply applyK IFFTs across each ele-
whered,, is a channel selection and delay vector. We mayment of all the scalar-valued spectral inverse matrices: Pe
now find g, = (aﬁHcoan_ﬁ{mV + UEI)THc_onvdm- where  forming adaptation in the frequency-domain, however, pro-
we have used the pseudo-invefsg' for valid cases where qes its own challenges, as for example the system must wait
M > P andHcon HE,,, may be rank-deficient. After fur- 15 accumulate enough data on which so perform the FFT.
ther mathematical development we can relate this to the regynother problem not present with the time-domain method
ularised pseudo-inverse of the channel is that of circular convolution effects caused by perforgnin
1 frequency-domain processing [8]. The usual method to over-
g, = dj (Hg)anconv+ H, V(Hgnv)T) H{nf8) cor?1e thig is by zefo-padding Ech]e channel to at least length
= afl (HE Heon + JZI)_l HZ (9)  2Lx. Fortunately this is_implicit to be method as we choose
alengthL, FFT to obtain an equaliser of the correct length
whereR,, is the auto-correlation matrix of the noise. We and we usually choosk, > 2L}, hence we avoid this prob-
must, of course, perform this calculatidd times for each lem. Unfortunately, this technique is not completely effec
of the transmitted data streams and can then stacgtl'® tive due to fact we are performing a deconvolution as shown
to create the MIMO equaliser matri&. The main differ- by Kirkeby et al. in [9]. The solution they proposed to
ence between this method and thelomain method in the ameliorate the circular convolution or wrap-around efést
previous section is that this will always produce a FIR soluto add a regularisation co-efficient even in a noiseless-envi
tion while thez-domain method will in general produce an ronment chosen using a pragmatic approach, and this does
IIR solution. Also, with this method we are free to choosesolve the problem very effectively. Unfortunately the time
the length of the equaliser so we can always choose it to givéomain derivation which shows that a noise power regular-
good performance, albeit that this will be at the expense oisation term results in an MMSE solution does not apply to



this frequency-domain method, due to the wrap-around et
fects. However, at low SNRs where the error due to nois:
dominates over the error due to the wrap-around effects it i
still be beneficial to regularise by the noise power. In thest
cases the performance is the same as the optimum MMS

L
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—-c- time—domain inversion
frequency—domain inversio|

&

time-domain solution. The regularised solution is given by
GH[f] = e/ (M [fIH[f] + 61) HI[f. (A1)

At low SNRs we may choosg = o2 as with the time- S
domain method, and then at some critical SNR switch to
fixed value forg that regularises for the wrap-around effects. 5+ T
The complexity of this frequency-domain method is domi- ‘ oy
nated by the FFTs that are required during its execution, an 107 m " » 2 = %
S0 isO(Lg log, Ly), Which is by far the lowest of the three SNR [dB]

methods.

ensemble MS
¥

+@

Fig. 2. MSE curves forz, time and frequency-domain inver-

6. SSMULATIONS sion in a mildly time-dispersive noisy environment.

For the simulations we use three MIMO channels. The first
is a2 x 2 channel with length 2 FIR sub-channels, and the2nd both are much better than thelomain technique of ac-
eigenvalue spread of the convolutional MIMO channel macount of the different inversion criterion. At mid SNR legel
trix, H, which gives a measure of the difficulty in inverting !l the performances are similar but at high SNRs we see that
the MIMO channel using the time-domain technique in Secthe z-domain technique is superior due to its IIR part; re-
tion 4 is about 20 [7]. The MIMO channel determinant is member that the-domain inverse still retains this from the
non-minimum phase and hence the IIR inverse is unstabl§table part of the IIR determinant. The time-domain method
but there are no zeros near the unit circle. The second ar@llows closely, with the frequency-domain technique per-
third channels aré x 2 MIMO channels based on measure- forming somewhat worse. In Section 5 we explained that we
ments taken from the Signal Processing Information Bas&hould use a regularisation fgctor even in a.noiseless envi-
(SPIB) at Rice University [10] and in both cases the sybfonment on .account of the circular convolutlop effects but
channel comprising the MIMO channel are truncated to 5¢'€ré the optimum factor is found to be approximately zero,
taps and start from just before the main part of the responsg& this is the best performance possible with the frequency-
The second MIMO channel uses the unmodified channe/domain technique. The frequency-domain method appears to
from SPIB, and the MIMO channel has a minimum pha‘,:,eresult in the best performance compromise in terms of MSE,
determinant in the-domain. The RMS delay spread of the Which is the same as optimum MMSE performance at the
sub-channels are betweéréns and0.4us, and the eigen- More real_istic lower SNR vaIL_Jes, and aftaconsiderably lower
value spread of the convolutional MIMO channel is 13. Forcomputational cost that the time-domain method.
the third MIMO channel, the channels are modified to make Figure 3 shows the performance of inversion with the
them very frequency-selective, creating an extremelyileost severely time-dispersive MIMO channel with a minimum
2 x 2 MIMO system with a non-minimum phase determinantphase determinant. We use length 280 filters for the time-
with poles near the unit circle in thedomain. In this case domain and frequency-domain equalisers. At low and mid
the RMS delay spread is betweens and0.5us and the  SNR the results are similar to the mildly time-dispersive
eigenvalue spread of the convolutional MIMO channel machannel. At high SNR the-domain method is still the best,
trix is 962. Thez-domain inversion is ZF, the time-domain but the time-domain and frequency-domain inverse perfor-
inversion is MMSE and the frequency-domain inversion is anances are much closer to each other now. As the determi-
regularised ZF that approaches the MMSE at low SNRs. Theant is minimum phase no stabilisation is required forthe
MSE is assessed by passing white noise through the cogomain inversion, and so this method has significantly lower
catenated channel-equaliser system, and measuring the diomputational complexity than the other two methods. Also
ference between the input and output. its performance is only 3 dB worse that the MMSE case at
Figure 2 shows the three equalisers calculated from inveSNR=0, which may be deemed acceptable given the compu-
sion in the relevant domains using the first channel. Théation savings.
z-domain inversion is possible as there are no poles near Figure 4 shows the performances for the severely time-
the unit circle so we employ the stabilisation technique dedispersive and frequency-selective MIMO channel with pole
scribed in Section 3 using a length 32 FIR filter to approxi-near the unit circle and a non-minimum phase determi-
mate the unstable part of the IR determinant. With both thenant. Thez-domain techniques was unable to calculate an
time-domain and frequency-domain inversion we also use aqualiser at all for reasons explained in Section 3 and so
length 32 FIR inverse. We see that at low SNRs the timeno result is shown. The frequency-domain inverse regu-
domain and frequency-domain techniques perform similarlyarised by the noise power performs well at low SNR, but at
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7. CONCLUSIONS

We have considered the MSE performance and stated the
computational complexity order of three different kinds of
analytic inversion techniques for frequency-selectiviVidl
channels. We outlined the limitations and benefits of each of
these techniques and showed when they could or could not
be used. We saw that for mildly time-dispersive channels the
frequency-domain inversion gave the best performance com-
promise across the more realistic lower SNR range at a com-
putational cost significantly lower than that of the MMSE
time-domain method. For severely time-dispersive MIMO
channels with a minimum phase determinant, skglomain
inversion gave the best performance compromise in terms of
MSE and the lowest computational cost since no stabilisatio
was required. With severely time-dispersive MIMO channels

Fig. 3. MSE curves for, time and frequency-domain inver- with a non-minimum phase determinant and poles near the

sion in a severely time-dispersive noisy environment with ff

minimum phase channel determinant.

nit circle, thez-domain method cannot be used. Although
he time-domain method gave the best MSE performance
compromise across the whole range, the frequency-domain
technique also gave a satisfactory performance by swichin
the regularisation factor when the noise power falls belwsv t
optimum noiseless factor, at a much reduced computational
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