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ABSTRACT

This paper discusses MIMO equalisers created by analytic
inversion of a known frequency-selective MIMO channel. It
considers inversion performed in thez-domain, time-domain
using convolutional matrices, and the frequency-domain. It
explains the criteria of these inversions and compares the per-
formances in terms of MSE between the input and output to
a concatenated channel-equaliser system through use of sim-
ulations, and puts these results into context in terms of com-
putational cost.

1. INTRODUCTION

In recent years, theoretical and practical investigationshave
shown that it is possible to realise enormous channel ca-
pacities, far in excess of the point-to-point capacity given
by the Shannon-Hartley law [1]. The majority of work to
date on this area has assumed flat sub-channels composing
the multiple-input multiple-output (MIMO) channel. As the
aim of MIMO systems is often to increase the data transmis-
sion rate of a communication system, a wideband and hence
highly time-dispersive model would seem more appropriate.
To properly exploit this environment to realise these capac-
ity increases, the MIMO channel must be equalised for both
the cross-channel interference (CCI) between MIMO sub-
channels and the inter-symbol interference (ISI) inherentto
broadband channels, so that the performance of any system
attempting to harness the multipath diversity can do so while
maintaining a satisfactory bit error rate (BER) performance.
Creating a system that performs equalisation with a satisfac-
tory performance for a highly time-dispersive MIMO system
is far from a simple task.

Generally, creating an equaliser will require inverting the
system. One such technique is by adaptive inversion of the
MIMO system [2]. While this technique results in a satisfac-
tory MIMO equaliser for recovering signals passed through
extremely hostile highly frequency-selective systems, the
adaptation is still slow, requiring tens of thousands of nor-
malised least mean squared (NLMS) algorithm iterations be-
fore the adaptive systems converges to an acceptably low
mean squared error (MSE). If the channel has a sufficiently
high coherence time then this will not cause any problems,
however for fast moving mobile stations (MS) it is desirable

to have a system that can find an equaliser as quickly as pos-
sible. Secondly, the adaptive inversion can consume a large
amount of computational power, which may be at a premium
in a MS, so again we are motivated to create a system which
can quickly invert the MIMO system to create an equaliser,
and to keep the complexity of this system as low as possible.

It is well-known that adaptive algorithms such as NLMS
can converge quickly to short channels and where the input
signal to the algorithm is spectrally flat. An adaptive FIR
system to identify an unknown MIMO channel is generally
shorter than the system to invert it, and also in the identifica-
tion set-up the input signal can be chosen to be white. This
is not the case for the adaptive inversion set-up where the
algorithm input is coloured by the frequency-selective chan-
nel. Hence, we propose that we can adaptively identify the
unknown MIMO system, and then analytically invert it at the
receiver. In this paper, we will assume the MIMO channel
is known from a previous identification, and we look at tech-
niques to analytically invert it.

Section 2 outlines the system model used in this paper.
Section 3 shows an zero-forcing (ZF) MIMO inversion and
stabilisation technique which give an IIR equaliser, while
Section 4 shows a time-domain method for finding a MMSE
FIR MIMO equaliser. Section 5 outlines a frequency-domain
method for finding a FIR MIMO equaliser, which although
sub-optimal can be calculated at a significantly lower com-
putational cost that the other methods, and shows how to
combat circular convolution effect inherent to this method.
Section 6 shows simulation performance results for the three
methods applied to three MIMO channels with differing
characteristics, and Section 7 draws conclusions.

2. SYSTEM MODEL

In the following section we will be calculating the channel
inverse in three different domains, and therefore the problem
must be also formulated in these domains. We now express
the system model in a domain-independent representation,
so that we can use this as a base to convert to the required
domain in the following sections.

The output of the MIMO channel is given by

y = Hx + ν, (1)
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Fig. 1. Schematic of a known MIMO channel and a MIMO
equaliser shown in three different domains.

wherey is a vector of output signals from the known MIMO
channel,H, corrupted by AWGNν, andx is a vector of the
input signals. The structures of these variables are undefined
at this point as they depend on the representation domain.
Figure 1 shows this system in combination with a suitable
MIMO equaliserG.

3. Z-DOMAIN INVERSION

A simple method to calculate the inverse of a MIMO system
is to express the problem in thez-domain and algebraically
invert the MIMO matrix. In general, this will result in an IIR
system, and although the method is very simple and can lead
to an excellent solution in some cases, it can also lead to an
unstable solution. Whilst we can use a technique to stabilise
the unstable parts of the IIR system, other problems arise if
the problem is ill-conditioned that cannot be easily solved.

We start by expressing the MIMO system matrix in the
z-domain

H(z) =







h11(z) · · · hM1(z)
...

...
h1P (z) · · · hMP (z)






, (2)

wherehmp(z) = hmp(0)z0 + hmp(1)z−1 + · · · +
hmp(Lh+1)z−Lh+1 andLh is the length of the MIMO chan-
nel impulse response. Hence the system function becomes
y(z) = H(z)x(z) + ν(z), and the elements of the vectors
and matrix are all functions inz. The inverse criterion can
now be expressed

G(z)H(z) = z−dI, (3)

which results in the zero-forcing solution. The inverseG(z)
is given by

G(z) = (zdH̃(z)H(z))−1H̃(z), (4)

whereH̃ is the parahermitian onH [3].
The inversion ofH̃(z)H(z) can be found using the stan-

dard Gaussian algebraic elimination method, where we per-
form row operations on the polynomials inz in the same
way as if they where scalars. The inverse is stable if
det(H̃(z)H(z)) is minimum phase. Problems arise when the
determinant is non-minimum phase and therefore we must
use a stabilisation technique where we express the determi-
nant polynomial in terms of its roots. The roots with a mag-
nitude less than one can be reconstructed into a stable IIR

system. The remaining roots are expressed in partial fraction
form and then converted into stable infinite length anti-causal
FIR systems using the relationship

1

1 − az
=

∞
∑

n=0

anzn |a| < 1, (5)

wherea is the reciprocal of the pole, and taking care to deal
with multiple co-located poles correctly. We now truncate
this at an appropriate value forn wherean has decayed to a
suitably small value, and introduce a delay to make the sys-
tem causal. This forms the basis for a delayed causal stable
FIR approximation of an unstable IIR system.

While this works well in theory, in practice an ill-
conditioned MIMO system where the determinants have
roots near the unit circle in thez-domain can cause fatal prob-
lems. During the stabilisation process we need to calculate
the roots of the determinant polynomial, but this operation
is very prone to finite accuracy round-off errors during com-
putation. After the stabilisation operations on the roots the
polynomial must be reconstructed and the small inaccuracies
in the root-finding operation are magnified so that previously
stable parts of the determinant close to but inside the unit
circle have now migrated to outside the unit circle and have
become unstable. The only obvious solution to this is to in-
crease the machine accuracy so that the roots can be accu-
rately found.

If the determinant can be guaranteed to be minimum phase
we can cut out the stabilisation process and thisz-domain
method not only works very well, but has a low computa-
tional complexity ofO(Lh log2 Lh) for a MIMO system of
fixed dimensions, assuming the convolutions in the calcula-
tion of H̃(z)H(z) in the determinant are performed using
FFTs. If the determinant is non-minimum phase and there are
no determinant roots near the unit circle good performance
is still possible using the stabilisation process, although the
computational complexity becomesO(L3

h).
In a low noise environment where the determinant of the

channel has no roots near the unit circle, thisz-domain tech-
nique can work very well and quickly. Unfortunately, we
cannot usually guarantee that the determinant will either be
minimum phase, or have no roots near the unit circle when it
is non-minimum phase, and so this method is unsuitable for
the equalisation of MIMO systems in general. Also, the ZF
solution will generally not exhibit favourable behaviour in a
noisy environment, and the calculation of an MMSE solution
in thez-domain is very complicated [4].

4. TIME-DOMAIN INVERSION

We may represent the time-dispersiveness of the MIMO sys-
tem in the time-domain where the impulse response of each
sub-channel forming the MIMO system are arranged into a
convolutional matrix. Each sub-channel has its own convo-
lutional matrix and all of these matrices are augmented and
stacked to produce a large parent MIMO convolutional ma-
trix [2, 5, 6]. The convolution matrix for the sub-channel be-



tween transmitterm and receiverp is given by

Hmp =













hH
mp · · · · · · 0 0

0 hH
mp · · ·

. . . 0

0 0
. ..

. . .
...

0 0 · · · hH
mp · · ·













, (6)

wherehmp = [hmp[0] · · · hmp[Lh − 1]]H is the sub-
channel impulse response. We may construct a parent con-
volutional matrixH over allm andp, yielding

Hconv =











H11 H21 · · · HM1

H12 H22 · · · HM2

...
...

. . .
...

H1P H2P · · · HMP











, (7)

whereHconv is of dimensionsPLg × M(Lh + Lg − 1) and
Lg is the chosen length of the MISO equaliser filters. Us-
ing this we create a transmission modely = Hconvx + ν,
wherex is a lengthM(Lh + Lg − 1) stacked vector repre-
senting the input to the MIMO system,ν is a lengthPLg

vector representing AWGN andy is a lengthPLg vector
representing the output. Note that both the varying nature
of the signals in time and the multiple inputs/output are rep-
resented in one dimension in the input, output and noise vec-
tors. To find the MIMO equaliser we must obtain a ma-
trix G so that after a signal is passed through the chan-
nel and equaliser, there should ideally only be a delay. We
may findG using the well-known Weiner-Hopf solution [7],
gm = R−1pm wheregm = [gH

m1 gH
m2 · · · gH

mP ]H

andgmp = [gmp[0] gmp[1] · · · gmp[Lg − 1]]H . Af-
ter some mathematical development we can calculate that
R = σ2

xHconvH
H
conv + σ2

νI, assuming that all the input vari-
ances and noise powers are the same, whereσ2

x is the power
of the input signalx[n] andσ2

ν is the power of the noiseν[n]
at each receiver. Also, we can shown thatpm = Hconvdm,
wheredm is a channel selection and delay vector. We may
now find gm = (σ2

xHconvH
H
conv + σ2

νI)
†Hconvdm, where

we have used the pseudo-inverse{·}† for valid cases where
M > P andHconvH

H
conv may be rank-deficient. After fur-

ther mathematical development we can relate this to the reg-
ularised pseudo-inverse of the channel

gH
m = dH

m

(

HH
convHconv + HH

convRν(HH
conv)

†
)−1

HH
conv(8)

= dH
m

(

HH
convHconv + σ2

νI
)−1

HH
conv, (9)

whereRν is the auto-correlation matrix of the noise. We
must, of course, perform this calculationM times for each
of the transmitted data streams and can then stack thegm’s
to create the MIMO equaliser matrixG. The main differ-
ence between this method and thez-domain method in the
previous section is that this will always produce a FIR solu-
tion while thez-domain method will in general produce an
IIR solution. Also, with this method we are free to choose
the length of the equaliser so we can always choose it to give
good performance, albeit that this will be at the expense of

greater computational complexity for the equaliser calcula-
tion.

While the method usually works well, the complexity can
become large very quickly with an increasingLg, due to
the fact that this causes both dimensions ofHconv to in-
crease. After some algebraic development the complexity
with respect toLg involved in calculatinggm∀m ∈ 1 : M

can be shown to beO(L3
g). Notice that this is greater than

theO(L3
h) of thez-domain method, as generally we choose

Lg > Lh. From this we see that it is beneficial for compu-
tational simplicity to keepLg as low as possible while still
achieving satisfactory performance. Alternatively we may
seek a lower complexity method.

5. FREQUENCY-DOMAIN INVERSION

We may arrange for the impulse responses of the sub-
channels to be transformed into their spectral representa-
tions, and hence formulate the problem in the frequency do-
main. In this case the elements of the MIMO channel matrix
are functions of frequency, as are the elements ofx, ν and
y. Hence we have the frequency-domain system function
y(f) = H(f)x(f)+ν(f). We may use the FFT to obtain the
frequency-domain representations of the time-domain sig-
nals. The main advantage of processing the problem in the
frequency-domain is that the inversion ofH becomes very
simple as we may now deal withK scalar valued MIMO ma-
trices for each frequency bin which are independent, where
K in the number of frequency bins of the FFT, and invert
each matrix using the standard algebraic method. We use the
pseudo-inverse

GH [f ] = e−j2πfd
(

HH [f ]H[f ]
)−1

HH [f ], (10)

wheree−j2πfd is ad symbol delay in the columns to make
the non-causal part of the response realisable. After we have
calculatedG[f ] we simply applyK IFFTs across each ele-
ment of all the scalar-valued spectral inverse matrices. Per-
forming adaptation in the frequency-domain, however, pro-
vides its own challenges, as for example the system must wait
to accumulate enough data on which so perform the FFT.
Another problem not present with the time-domain method
is that of circular convolution effects caused by performing
frequency-domain processing [8]. The usual method to over-
come this is by zero-padding the channel to at least length
2Lh. Fortunately this is implicit to be method as we choose
a lengthLg FFT to obtain an equaliser of the correct length
and we usually chooseLg > 2Lh, hence we avoid this prob-
lem. Unfortunately, this technique is not completely effec-
tive due to fact we are performing a deconvolution as shown
by Kirkeby et al. in [9]. The solution they proposed to
ameliorate the circular convolution or wrap-around effects is
to add a regularisation co-efficient even in a noiseless envi-
ronment chosen using a pragmatic approach, and this does
solve the problem very effectively. Unfortunately the time-
domain derivation which shows that a noise power regular-
isation term results in an MMSE solution does not apply to



this frequency-domain method, due to the wrap-around ef-
fects. However, at low SNRs where the error due to noise
dominates over the error due to the wrap-around effects it is
still be beneficial to regularise by the noise power. In these
cases the performance is the same as the optimum MMSE
time-domain solution. The regularised solution is given by

GH [f ] = e−j2πfd
(

HH [f ]H[f ] + βI
)−1

HH [f ]. (11)

At low SNRs we may chooseβ = σ2
ν as with the time-

domain method, and then at some critical SNR switch to a
fixed value forβ that regularises for the wrap-around effects.
The complexity of this frequency-domain method is domi-
nated by the FFTs that are required during its execution, and
so isO(Lg log2 Lg), which is by far the lowest of the three
methods.

6. SIMULATIONS

For the simulations we use three MIMO channels. The first
is a 2 × 2 channel with length 2 FIR sub-channels, and the
eigenvalue spread of the convolutional MIMO channel ma-
trix, H, which gives a measure of the difficulty in inverting
the MIMO channel using the time-domain technique in Sec-
tion 4 is about 20 [7]. The MIMO channel determinant is
non-minimum phase and hence the IIR inverse is unstable,
but there are no zeros near the unit circle. The second and
third channels are2 × 2 MIMO channels based on measure-
ments taken from the Signal Processing Information Base
(SPIB) at Rice University [10] and in both cases the sub-
channel comprising the MIMO channel are truncated to 50
taps and start from just before the main part of the response.
The second MIMO channel uses the unmodified channels
from SPIB, and the MIMO channel has a minimum phase
determinant in thez-domain. The RMS delay spread of the
sub-channels are between6.6ns and0.4µs, and the eigen-
value spread of the convolutional MIMO channel is 13. For
the third MIMO channel, the channels are modified to make
them very frequency-selective, creating an extremely hostile
2×2 MIMO system with a non-minimum phase determinant
with poles near the unit circle in thez-domain. In this case
the RMS delay spread is between0.4µs and0.5µs and the
eigenvalue spread of the convolutional MIMO channel ma-
trix is 962. Thez-domain inversion is ZF, the time-domain
inversion is MMSE and the frequency-domain inversion is a
regularised ZF that approaches the MMSE at low SNRs. The
MSE is assessed by passing white noise through the con-
catenated channel-equaliser system, and measuring the dif-
ference between the input and output.

Figure 2 shows the three equalisers calculated from inver-
sion in the relevant domains using the first channel. The
z-domain inversion is possible as there are no poles near
the unit circle so we employ the stabilisation technique de-
scribed in Section 3 using a length 32 FIR filter to approxi-
mate the unstable part of the IIR determinant. With both the
time-domain and frequency-domain inversion we also use a
length 32 FIR inverse. We see that at low SNRs the time-
domain and frequency-domain techniques perform similarly
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Fig. 2. MSE curves forz, time and frequency-domain inver-
sion in a mildly time-dispersive noisy environment.

and both are much better than thez-domain technique of ac-
count of the different inversion criterion. At mid SNR levels
all the performances are similar but at high SNRs we see that
the z-domain technique is superior due to its IIR part; re-
member that thez-domain inverse still retains this from the
stable part of the IIR determinant. The time-domain method
follows closely, with the frequency-domain technique per-
forming somewhat worse. In Section 5 we explained that we
should use a regularisation factor even in a noiseless envi-
ronment on account of the circular convolution effects but
here the optimum factor is found to be approximately zero,
so this is the best performance possible with the frequency-
domain technique. The frequency-domain method appears to
result in the best performance compromise in terms of MSE,
which is the same as optimum MMSE performance at the
more realistic lower SNR values, and at a considerably lower
computational cost that the time-domain method.

Figure 3 shows the performance of inversion with the
severely time-dispersive MIMO channel with a minimum
phase determinant. We use length 280 filters for the time-
domain and frequency-domain equalisers. At low and mid
SNR the results are similar to the mildly time-dispersive
channel. At high SNR thez-domain method is still the best,
but the time-domain and frequency-domain inverse perfor-
mances are much closer to each other now. As the determi-
nant is minimum phase no stabilisation is required for thez-
domain inversion, and so this method has significantly lower
computational complexity than the other two methods. Also
its performance is only 3 dB worse that the MMSE case at
SNR=0, which may be deemed acceptable given the compu-
tation savings.

Figure 4 shows the performances for the severely time-
dispersive and frequency-selective MIMO channel with poles
near the unit circle and a non-minimum phase determi-
nant. Thez-domain techniques was unable to calculate an
equaliser at all for reasons explained in Section 3 and so
no result is shown. The frequency-domain inverse regu-
larised by the noise power performs well at low SNR, but at
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Fig. 3. MSE curves forz, time and frequency-domain inver-
sion in a severely time-dispersive noisy environment with a
minimum phase channel determinant.

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

10
1

10
2

SNR [dB]

en
se

m
bl

e 
M

S
E

time−domain
frequency−domain regularised by noise power
frequency−domain regularised by noiseless optimum (0.0001)

Fig. 4. MSE curves forz, time and frequency-domain inver-
sion in a severely time-dispersive noisy environment with a
non-minimum phase channel determinant.

high SNR the noise power drops below the optimum noise-
less regularisation factor found to be approximately 0.0001,
hence the MSE rises again. We also show a curve were the
inverse is regularised by this noiseless optimum across all
SNRs. Hence we could use the frequency-domain method
at all SNRs but switching the regularisation factor at about
30 dB SNR. Once again the time-domain methods results in
the optimum MMSE solution but at significant computational
cost. We could argue that the computational overhead does
not warrant the improvement in MSE at high SNRs where
the frequency-domain method regularised by the noiseless
optimum value performs satisfactorily, depending on the re-
quired performance for the application. Finally, notice that
in all simulations the performance of the frequency-domain
method regularised by noise power approaches that of the
MMSE time-domain method at low SNRs, as the observation
noise dominates over the effects of the circular convolution.

7. CONCLUSIONS

We have considered the MSE performance and stated the
computational complexity order of three different kinds of
analytic inversion techniques for frequency-selective MIMO
channels. We outlined the limitations and benefits of each of
these techniques and showed when they could or could not
be used. We saw that for mildly time-dispersive channels the
frequency-domain inversion gave the best performance com-
promise across the more realistic lower SNR range at a com-
putational cost significantly lower than that of the MMSE
time-domain method. For severely time-dispersive MIMO
channels with a minimum phase determinant, thez-domain
inversion gave the best performance compromise in terms of
MSE and the lowest computational cost since no stabilisation
was required. With severely time-dispersive MIMO channels
with a non-minimum phase determinant and poles near the
unit circle, thez-domain method cannot be used. Although
the time-domain method gave the best MSE performance
compromise across the whole range, the frequency-domain
technique also gave a satisfactory performance by switching
the regularisation factor when the noise power falls below the
optimum noiseless factor, at a much reduced computational
cost.
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