Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Switching leukemia cell phenotype between life and death

Tucker, S.J. and Rae, C. and Littlejohn, A.F. and Paul, A. and MacEwan, D.J. (2004) Switching leukemia cell phenotype between life and death. Proceedings of the National Academy of Sciences, 101 (35). pp. 12940-12945. ISSN 1091-6490

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Divergent life or death responses of a cell can be controlled by a single cytokine (tumor necrosis factor α, TNF) via the signaling pathways that respond to activation of its two receptors (TNFR1 and TNFR2). Here, we show that the choice of life or death can be controlled by manipulation of TNFR signals. In human erythroleukemia patient myeloid progenitor stem cells (TF-1) as well as chronic myelogenous leukemia cells (K562), granulocyte–macrophage colony-stimulating factor primes cells for apoptosis. These death-responsive cells show prolonged TNF stimulation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, but no NF-κB transcriptional activity as a consequence of receptor-interacting protein degradation by caspases. Conversely, cells of a proliferative phenotype display antiapoptotic NF-κB responses that antagonize c-Jun N-terminal kinase and p38 mitogen-activated protein kinase stress kinase effects. These proliferative effects of TNF are apparently due to enhanced basal expression of the caspase-8/FLICE-inhibitory protein FLIP. Manipulation of the NF-κB, c-Jun N-terminal kinase, or p38 mitogen-activated protein kinase signals switches leukemia cells from a proliferative to an apoptotic phenotype; consequently, these highly proliferative cells die rapidly. In addition, sodium salicylate mimics the death phenotype signals and causes selective destruction of leukemia cells. These findings reveal the signaling mechanisms underlying the phenomenon of human leukemia cell life/death switching. Additionally, through knowledge of the signals that control TNF life/death switching, we have identified several therapeutic targets for selectively killing these cells.