Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

An unprecedented mixed alkali metal organonitrogen ladder : synthesis, NMR spectroscopic studies, and x-ray crystallographic studies of the dilithium disodium amide [{LiNa[N(CH2Ph)2]2.cntdot.OEt2}2]

Baker, Daniel R. and Mulvey, Robert and Clegg, William and O'Neil, Paul A. (1993) An unprecedented mixed alkali metal organonitrogen ladder : synthesis, NMR spectroscopic studies, and x-ray crystallographic studies of the dilithium disodium amide [{LiNa[N(CH2Ph)2]2.cntdot.OEt2}2]. Journal of the American Chemical Society, 115 (14). pp. 6472-6473. ISSN 0002-7863

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

If the small number of mixed alkali metal organic formulations’ being increasingly utilized in proton abstraction applications2 are typical, then a group of such compounds would be of considerable value to the synthetic chemist. Indeed, a new class of mixed Li/Na and Li/K organic compounds could offer a range of reactivities and selectivities even surpassing that of conventional organolithium reagents. However, as yet, species of this type are rare. We are therefore attempting to develop this area synthetically and to elucidate the structural makeup of any new mixed metal aggregate formed.