Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Synthesis and crystal structure of the mixed lithium sodium guanidide [Li4Na2{NC(NMe2)2}6]: A stack of three (metal-nitrogen)2 dimeric rings with additional intramolecular (tertiary amine) nitrogen-lithium coordinations

Barnett, N.D.R. and Mulvey, Robert and Clegg, William and O'Neil, Paul A. (1992) Synthesis and crystal structure of the mixed lithium sodium guanidide [Li4Na2{NC(NMe2)2}6]: A stack of three (metal-nitrogen)2 dimeric rings with additional intramolecular (tertiary amine) nitrogen-lithium coordinations. Polyhedron, 11 (21). pp. 2809-2812. ISSN 0277-5387

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The tetralithium disodium guanidide [Li4Na2{N=C(NMe2)2}6], crystallized from a 1 : 1 : 2 Bu(n)Li : Bu(n)Na : HN=C(NMe2)2 mixture, has been studied by X-ray crystallography and found to be related to the ketimide [Li4Na2{N=C(Ph)But}6], reported earlier as having a stacked-core of three (metal-nitrogen)2 ring dimers with Li+ and Na+ cations in end rings and the central ring, respectively. However, it also displays a unique feature: intramolecular donor-acceptor interactions which connect dimethylaminonitrogen atoms project from the central ring to Li+ cations in the end rings. Although these interactions are long range (average length 2.304 angstrom, cf. 2.139 angstrom for Li-N core bonds), they still significantly influence the core bonding as evidenced by an analysis of bond lengths and bond angles.