Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Dimensional effects in the warm calibration of a stainless steel cylinder

Rosochowski, A. and Rosochowska, M. (2003) Dimensional effects in the warm calibration of a stainless steel cylinder. Journal of Materials Processing Technology, 135 (2-3). pp. 125-130. ISSN 0924-0136

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

To reduce the yield stress in austenitic stainless steels, the forming temperature can be increased to 200 °C. In order to assess the effect of this change on component accuracy, a benchmark process of closed-die calibration of a cylinder was simulated using finite element method (FEM). A fully coupled thermal-stress analysis was carried out for the whole process cycle, including closed-die compression, punch retraction, workpiece ejection and cooling to room temperature. The findings of this simulation confirmed the influence of die deflection, secondary yielding and component springback on accuracy. Thermal effects also played an important role. In particular, a modest increase of the initial temperature can compensate for oversizing and barreling errors caused by die deflection and springback. The speed of the process is another variable which influences component accuracy by changing the time scale of thermal phenomena.