Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Multi-layered piezoelectric composite transducers

O'Leary, R.L. and Parr, A.C.S. and Hayward, G. (2003) Multi-layered piezoelectric composite transducers. In: IEEE Symposium on Ultrasonics 2003, 2003-10-05 - 2003-10-08.

[img]
Preview
PDF
IEEE_Symposium_2002_O_Leary.pdf - Preprint

Download (505kB) | Preview

Abstract

Multilayered piezoelectric materials present themselves as a suitable technology for the development of sub 100kHz transducers. A variety of different configurations have been proposed, including stacked 2-2, 1-3 and 3-1 connectivity configurations. Historically multilayer devices designed for low frequency of operation have comprised uniform layer thickness through the height of the device. The potential for extended bandwidth through the use of non-uniform layers through the thickness dimension has been investigated. In addition commercially available stacked ceramic mechanical actuators have been investigated. A combination of theoretical and experimental assessment has been employed to evaluate each transducer technology. Selection of the passive phase for these multilayer devices is critical. Typically, these devices operate in the high power regime and as such selection of the passive polymer material is crucial - thermal stability coupled with thermal conductivity would be a virtue. To this end a number of polymer materials possessing the appropriate thermal properties have been investigated.