Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Framework of an integrated tolerance synthesis model and using FE simulation as a virtual tool for tolerance allocation in assembly design

Manarvi, I.A. and Juster, N.P. (2004) Framework of an integrated tolerance synthesis model and using FE simulation as a virtual tool for tolerance allocation in assembly design. Journal of Materials Processing Technology, 150 (1-2). pp. 182-193. ISSN 0924-0136

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Nominal dimensions may not be achievable during manufacturing processes, due to technological or financial limitations. Therefore, tolerance allocation is of significant importance for successful assembly. The information required to allocate tolerances for complex parts and assemblies is, however, generally not available at the initial design-stage. The research on tolerance synthesis has, therefore, been conducted to develop methods, algorithms and processes, with primary focus on manufacturing, assembly, cost and quality issues. In the reported research, a framework was proposed to compile available information for developing an integrated tolerance synthesis model and a step-by-step tolerance allocation process. Architecture of the model and the process would provide a foundation for the development of a tolerance synthesis software. The research has also been extended to explore the applications of FE simulation, as a virtual tool, to the prediction of the influence of geometric tolerances on the part distortions for complex part-forms and assembly design.