Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Investigating the coating dependent release mechanism of a pulsatile capsule using NMR microscopy

Sutch, J.C.D. and Ross, A. and Köckenberger, W. and Bowtell, R.W. and MacRae, J.R. and Stevens, H. and Melia, C.D. (2003) Investigating the coating dependent release mechanism of a pulsatile capsule using NMR microscopy. Journal of Controlled Release, 92 (3). pp. 341-347. ISSN 0168-3659

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Chronopharmaceutical capsules, ethylcellulose-coated to prevent water ingress, exhibited clearly different release characteristics when coated by organic or aqueous processes. Organic-coated capsules produced a delayed pulse release, whereas aqueous-coated capsules exhibited less delayed and more erratic release behaviour. Nuclear magnetic resonance microscopy was used to elucidate the internal mechanisms underlying this behaviour by studying the routes of internal water transport and the timescale and sequence of events leading to the pulse. Images showed that the seal between the shell and the tablet plug is a key route of water penetration in these dosage forms. There is evidence for a more efficient seal in the organic-coated capsule, and although some hydration of the contents was evident, erosion of the tablet plug is most probably the controlling factor in timed release. The premature failure of the aqueous-coated capsule appears to be a result of rapid influx of water between plug and capsule with hydration of the low substituted hydroxypropylcellulose expulsion agent. As a result of this, the tablet plug remains intact, but appears unable to be ejected. The resulting significant pressure build-up causes premature release by distortion and splitting of the capsule shell. These events may be aided by a weakening of the aqueous-coated gelatin shell by hydration from the inside, and at the mouth of the capsule where previous electron microscope studies have shown incomplete coating of the inside by the aqueous process.