Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol

Dominguez-Rosado, E. and Liggat, J.J. and Snape, Colin and Eling, B. and Pichtel, J. (2002) Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol. Polymer Degradation and Stability, 78 (1). pp. 1-5. ISSN 0141-3910

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Combustion of polyurethane foams releases toxic gaseous products. Therefore, decreasing the flammability of polyurethane foams is of practical significance to public health and the environment. The reported study investigated the thermal stability of urethane modified polyisocyanurate foams based on the presence of aromatic, aliphatic polyester polyol and polyether polyol moieties. Thermogravimetric analysis and differential scanning calorimetry demonstrated that the foam containing the lowest isocyanate index (220) and the lowest molecular mass of polyether polyol (200) was the most flammable (35% of char residue). Furthermore, the foams which contained a high molecular mass of polyether polyol (2000) and high isocyanate index (460) experienced fire performance (45% of char residue) similar to those foams containing aliphatic and aromatic polyester polyol (41 and 44% of char residue respectively).