Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol

Dominguez-Rosado, E. and Liggat, J.J. and Snape, Colin and Eling, B. and Pichtel, J. (2002) Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol. Polymer Degradation and Stability, 78 (1). pp. 1-5. ISSN 0141-3910

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Combustion of polyurethane foams releases toxic gaseous products. Therefore, decreasing the flammability of polyurethane foams is of practical significance to public health and the environment. The reported study investigated the thermal stability of urethane modified polyisocyanurate foams based on the presence of aromatic, aliphatic polyester polyol and polyether polyol moieties. Thermogravimetric analysis and differential scanning calorimetry demonstrated that the foam containing the lowest isocyanate index (220) and the lowest molecular mass of polyether polyol (200) was the most flammable (35% of char residue). Furthermore, the foams which contained a high molecular mass of polyether polyol (2000) and high isocyanate index (460) experienced fire performance (45% of char residue) similar to those foams containing aliphatic and aromatic polyester polyol (41 and 44% of char residue respectively).