Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray MS

Spickett, C.M. and Rennie, N. and Winter, H. and Zambonin, L. and Landi, L. and Jerlich, A. and Schaur, R.J. and Pitt, A.R. (2001) Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray MS. Biochemical Journal, 355. pp. 449-457. ISSN 0264-6021

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe2+, lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.