Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Experimental testing and model validation of a small scale generator set for voltage and frequency stability analysis

Quinonez-Varela, G. and Cruden, A.J. (2003) Experimental testing and model validation of a small scale generator set for voltage and frequency stability analysis. In: 2003 IEEE Bologna Power Tech Conference, 2003-06-23 - 2003-06-26.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The integration of numerous small-scale generators into existing power systems is anticipated to impact the operation, control and protection of such systems. In particular, maintaining voltage and frequency stability within defined limits is more onerous and requires investigation. The effect of protective limiters and characteristics such as the genuine inertia of the generation set must be taken into consideration in planning studies in order to accurately represent the overall dynamic characteristics of distributed generators. This paper focuses on the investigation of these issues by studying a small-scale reciprocating engine/generator set. The experimental procedures used to determine the genuine inertia of the test rig are described, and the influence and importance of considering the action of protective limiters such as voltage-per-hertz (V/Hz) in stability studies is demonstrated. This work is directly relevant to the review of current UK stability limits, and to the generation planning framework supported by the Scottish Executive.