Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Concurrent modelling of components and realization systems to support proactive design for manufacture/assembly

Yan, X.T. and Borg, J. and Juster, N.P. (2001) Concurrent modelling of components and realization systems to support proactive design for manufacture/assembly. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215 (8). pp. 1135-1141. ISSN 2041-2975

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Increasing market pressure is forcing manufacturing companies to improve product lead times and quality at reduced cost. An important approach aimed at tackling these problems is to generate manufacturing/assembly system models concurrently with the design solutions of a component. A designer can therefore make product design decisions while having access to, and interacting with, the evolving 'virtual' manufacturing system models. This allows designers to foresee any potential manufacturing problems caused by design decisions. This paper presents an approach that proactively supports designers in making informed design decisions, through the timely revelation of knowledge about manufacturing and assembly processes. Such knowledge, when provided early in the design process, allows designers to avoid negative implications and to use positive ones. Based on this approach, a knowledge-intensive computer aided design (KICAD) prototype tool, named FORESEE, has been developed. FORESEE is a proof-of-concept system and allows designers to foresee and explore manufacturing and assembly consequences caused by design decisions, as the design of a mechanical component evolves. The paper presents an outline of the KICAD approach, together with a brief description of FORESEE's architecture and implementation. The application of FORESEE is demonstrated through a thermoplastic component design case study. FORESEE has been evaluated by practising designers. Evaluation results indicate that the approach has the potential proactively to support component design.