Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The structure and mechanism of the type II dehydroquinase from streptomyces coelicolor

Roszak, A.W. and Robinson, D.A. and Krell, T. and Hunter, I.S. and Fredrickson, M. and Abell, C. and Coggins, J.R. and Lapthorn, A.J. (2002) The structure and mechanism of the type II dehydroquinase from streptomyces coelicolor. Structure, 10 (4). pp. 493-503. ISSN 0969-2126

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The structure of the type II DHQase from Streptomyces coelicolor has been solved and refined to high resolution in complexes with a number of ligands, including dehydroshikimate and a rationally designed transition state analogue, 2,3-anhydro-quinic acid. These structures define the active site of the enzyme and the role of key amino acid residues and provide snap shots of the catalytic cycle. The resolution of the flexible lid domain (residues 21–31) shows that the invariant residues Arg23 and Tyr28 close over the active site cleft. The tyrosine acts as the base in the initial proton abstraction, and evidence is provided that the reaction proceeds via an enol intermediate. The active site of the structure of DHQase in complex with the transition state analog also includes molecules of tartrate and glycerol, which provide a basis for further inhibitor design.