Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

Pincik, E. and Kobayashi, H. and Takahashi, M. and Fujiwara, N. and Brunner, R. and Gleskova, H. and Jergel, M. and Mullerova, J. and Kucera, M. and Falcony, C. and Ortega, L. and Rusnak, J. and Mikula, M. and Zahoran, M. and Jurani, R. and Kral, M. (2004) Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells. Applied Surface Science, 235 (3). pp. 351-363. ISSN 0169-4332

Full text not available in this repository. Request a copy from the Strathclyde author


This paper deals with the photoluminescence, structural and electricalproperties of chemically passivated a-Si:H basedthinfilms and correspondingthinfilmsolarcells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electricalproperties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solarcells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solarcell multilayer structures was achieved which is of primary practical importance.