Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Equation of state for star polymers in good solvents

Patrickios, C. S. and Lue, L. (2000) Equation of state for star polymers in good solvents. Journal of Chemical Physics, 113 (13). pp. 5485-5492. ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We develop a free-energy model for star polymers in good solvents that accurately describes concentrated polymer solutions and displays the correct universal scaling behavior, in the limit of infinite molecular weight, for dilute and semidilute polymer concentrations.The architecture of the polymer molecules enters the model through the value of the second virial coefficient and the rescaled penetration function <(Psi)over bar>, the ratio of the penetration function Psi(f)to its asymptotic, infinite-molecular-weight value Psi*(f), wheref is the number of arms on the star polymer. The direction of approach of the equation of state to the universal, infinite-molecular-weight scaling limit depends on the relative magnitude of <(Psi)over bar>.For <(Psi)over bar>>1, the scaling equation of state is approached from "above," while for <(Psi)over bar><1, the scaling equation of state is approached from "below." We also perform new Monte Carlo simulations for the pressure and mean-square radius of gyration of star polymers composed of tangent-hard-spheres. The theory compares well with the Monte Carlo simulation data for the equation of state.(C) 2000 American Institute of Physics. [S0021-9606(00)50637-0].