Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Wireless communication networks for gas turbine engine testing

Xuewu, Dai and Sasloglou, Konstantinos and Atkinson, Robert and Strong, John and Panella, Isabella and Cai, Yun L and Mingding, Han and Wei, Chee Ang and Glover, Ian and Mitchell, John and Schiffers, Werner and Dutta, Partha (2011) Wireless communication networks for gas turbine engine testing. International Journal of Distributed Sensor Networks, 2012. ISSN 1550-1329

[img]
Preview
PDF
WIDAGATE_PAPER_v12_final_as_published_.pdf - Accepted Author Manuscript

Download (2MB) | Preview

Abstract

A new trend in the field of Aeronautical Engine Health Monitoring is the implementation of wireless sensor networks (WSNs) for data acquisition and condition monitoring to partially replace heavy and complex wiring harnesses, which limit the versatility of the monitoring process as well as creating practical deployment issues. Using wireless technologies instead of fixed wiring will fuel opportunities for reduced cabling, faster sensor and network deployment, increased data acquisition flexibility and reduced cable maintenance costs. However, embedding wireless technology into an aero engine (even in the ground testing application considered here) presents some very significant challenges, e.g. a harsh environment with a complex RF transmission environment, high sensor density and high data-rate. In this paper we discuss the results of the Wireless Data Acquisition in Gas Turbine Engine Testing (WIDAGATE) project, which aimed to design and simulate such a network to estimate network performance and de-risk the wireless techniques before the deployment.