Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Modelling collective learning in design

Wu, Zhichao and Duffy, A.H.B. (2004) Modelling collective learning in design. AI EDAM - Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 18 (4). pp. 289-313. ISSN 0890-0604

PDF (Modelling collective learning in design)
Modelling_collective_learning_in_design.pdf - Final Published Version

Download (1MB) | Preview


In this paper, a model of collective learning in design is developed in the context of team design. It explains that a team design activity uses input knowledge, environmental information, and design goals to produce output knowledge. A collective learning activity uses input knowledge from different agents and produces learned knowledge with the process of knowledge acquisition and transformation between different agents, which may be triggered by learning goals and rationale triggers. Different forms of collective learning were observed with respect to agent interactions, goal(s) of learning, and involvement of an agent. Three types of links between team design and collective learning were identified, namely teleological, rationale, and epistemic. Hypotheses of collective learning are made based upon existing theories and models in design and learning, which were tested using a protocol analysis approach. The model of collective learning in design is derived from the test results. The proposed model can be used as a basis to develop agent-based learning systems in design. In the future, collective learning between design teams, the links between collective learning and creativity, and computational support for collective learning can be investigated.