Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Solid state 13C NMR study of the char forming processes in polychloroprene

Dick, Caroline M. and Liggat, John J. and Snape, Colin (2001) Solid state 13C NMR study of the char forming processes in polychloroprene. Polymer Degradation and Stability, 74 (3). pp. 397-405. ISSN 0141-3910

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Polychloroprene, also known as neoprene, is an elastomer commonly utilised in the electrical and automobile industries. Its degradation is known to occur predominantly in a two stage process: HCl is lost in the initial step, whilst the second step involves the production of volatile hydrocarbons through chain scission. In this paper we describe the use of solid state 13C NMR as a probe for structural changes in the condensed phase during these degradative steps. Cross polarisation-magic angle spinning (CP-MAS) analysis of virgin polychloroprene and a series of samples degraded at temperatures between 275 and 550 °C reveals that as degradation becomes more advanced there is a steady loss of sp3 carbon with a commensurate growth in sp2 carbon. The bulk of the chlorine loss occurs by 350 °C with the aliphatic carbon lost by 550 °C, by which temperature the residue is essentially aromatic carbon. Dipolar dephasing experiments show that this residue is essentially a network of, on average, tri-substituted phenyl rings.