Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Ultrasonic wavefront integration using optical fibre sensors

Sorazu, B.L. and Thursby, G.J. and Culshaw, B. and Dong, F. and Yong, Y. and Yao, J. (2003) Ultrasonic wavefront integration using optical fibre sensors. In: Smart Structures and Materials 2003 Conference, 2003-03-02 - 2003-03-06.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Ultrasound has been demonstrated to be a perfect tool for NDT. There are several optical detectors that can be applied in NDT, for example fibre Bragg grating, interferometry, etc. Here we concentrate in polarimetric optical fibre detection. In this paper we develop a simple but realistic analysis of the ultrasonic wavefront integration technique along an optical fibre for acoustic detection. Our model considers the perturbation caused by the acoustic wave as an isotropic change in the effective refractive index of the sensing fibre used as the detection system and neglects the polarization modulation. Also we assume the stress homogeneous through the section of the fibre. The theoretical analysis has been simulated in MATLAB. In this program we have analysed the relation between the length of the sensing fibre, its distance to the ultrasound source and its sensitivity to ultrasound detection, for different orientations of the source with respect to the sensing fibre. The results indicate that optimum ultrasonic detection may be achieved through careful positioning and orientation of the optical fibre. These results may be applied, for example in NDT, where scattered ultrasound from defects introduces new effective sources that may be characterized by arrays of these integrating sensors.