Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Live video streaming over packet networks and wireless channels

Stankovic, V. and Hamzaoui, R. and Xiong, Zixiang (2003) Live video streaming over packet networks and wireless channels. In: PV-2003 13th Packet Video Workshop, 2003-04-01.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The transmission of live video over noisy channels requires very low end-to-end delay. Although automatic repeat request ensures lossless transmission, its usefulness to live video streaming is restricted to short connections because of the unbounded retransmission latency. An alternative is to use forward error correction (FEC). Since finding an optimal error protection strategy can be time expensive, FEC systems are commonly designed for the worst case condition of the channel, which limits the end-to-end performance. We study the suitability of two scalable FEC-based systems to the transmission of live video over packet networks. The first one uses Reed-Solomon codes and is appropriate for the Internet. The second one uses a product channel code and is appropriate for wireless channels. We show how fast and robust transmission can be achieved by exploiting a parametric model for the distortion-rate curve of the source coder and by using fast joint source-channel allocation algorithms. Experimental results for the 3D set partitioning in hierarchical tree video coder show that the systems have good reconstruction quality even in severe channel conditions. Finally, we compare the performance of the systems to the state-of-the-art for video transmission over the Internet. 1.