Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Fast forward error protection of packetized multimedia bitstreams for transmission over varying channels

Stankovic, V. and Hamzaoui, R. and Xiong, Z.X. (2003) Fast forward error protection of packetized multimedia bitstreams for transmission over varying channels. In: IEEE International Conference on Communications (ICC), 2003-05-11 - 2003-05-15.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We propose a real-time optimization algorithm that selects an appropriate channel code for hybrid systems that combine packetization of an embedded wavelet bitstream into independently decodable packets and forward error correction using a family of channel codes with error detection and error correction capability. Such systems are very powerful for the transmission of audio, images, and video over fading and erasure channels with varying statistics. We also give an implementation that uses an optimal packetization technique and a concatenated cyclic redundancy check/rate-compatible punctured convolutional coder. Experimental results show that the peak signal-to-noise ratio of the average mean square error of our system is up to 1.74 dB higher than that of the previous best hybrid system for a Rayleigh fading channel and a transmission rate of 0.25 bits per pixel. Finally, we compare the hybrid approach to a state-of-the-art approach that uses a product code to protect the information bitstream.