Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Fast forward error protection of packetized multimedia bitstreams for transmission over varying channels

Stankovic, V. and Hamzaoui, R. and Xiong, Z.X. (2003) Fast forward error protection of packetized multimedia bitstreams for transmission over varying channels. In: IEEE International Conference on Communications (ICC), 2003-05-11 - 2003-05-15.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We propose a real-time optimization algorithm that selects an appropriate channel code for hybrid systems that combine packetization of an embedded wavelet bitstream into independently decodable packets and forward error correction using a family of channel codes with error detection and error correction capability. Such systems are very powerful for the transmission of audio, images, and video over fading and erasure channels with varying statistics. We also give an implementation that uses an optimal packetization technique and a concatenated cyclic redundancy check/rate-compatible punctured convolutional coder. Experimental results show that the peak signal-to-noise ratio of the average mean square error of our system is up to 1.74 dB higher than that of the previous best hybrid system for a Rayleigh fading channel and a transmission rate of 0.25 bits per pixel. Finally, we compare the hybrid approach to a state-of-the-art approach that uses a product code to protect the information bitstream.