Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Evaluation of invertebrate infection models for pathogenic corynebacteria

Ott, Lisa and McKenzie, Ashleigh and Baltazar, Teresa and Britting, Sabine and Bischof, Andrea and Burkovski, Andreas and Hoskisson, Paul (2012) Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunology and Medical Microbiology.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

For several pathogenic bacteria, model systems for host–pathogen interactions were developed, which provide the possibility of quick and cost-effective high throughput screening of mutant bacteria for genes involved in pathogenesis. A number of different model systems, including amoeba, nematodes, insects, and fish, have been introduced, and it was observed that different bacteria respond in different ways to putative surrogate hosts, and distinct model systems might be more or less suitable for a certain pathogen. The aim of this study was to develop a suitable invertebrate model for the human and animal pathogens Corynebacterium diphtheriae,Corynebacterium pseudotuberculosis, and Corynebacterium ulcerans. The results obtained in this study indicate that Acanthamoeba polyphaga is not optimal as surrogate host, while both Caenorhabtitis elegans and Galleria larvae seem to offer tractable models for rapid assessment of virulence between strains. Caenorhabtitis elegans gives more differentiated results and might be the best model system for pathogenic corynebacteria, given the tractability of bacteria and the range of mutant nematodes available to investigate the host response in combination with bacterial virulence. Nevertheless, Galleria will also be useful in respect to innate immune responses to pathogens because insects offer a more complex cell-based innate immune system compared with the simple innate immune system of C. elegans.