Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Cathodoluminescence spectral mapping of III-nitride structures

Martin, R.W. and Edwards, P.R. and O'Donnell, K.P. and Dawson, M.D. and Jeon, C.W. and Liu, C. and Rice, G.R. and Watson, I.M. (2004) Cathodoluminescence spectral mapping of III-nitride structures. Physica Status Solidi A - Applications and Materials Science, 201 (4). pp. 665-672.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The application of cathodoluminescence spectral mapping to the characterisation of a range III-nitride semiconductor structures is described. Details are presented of the instrumentation developed to carry out such measurements using an electron probe micro-analyser. The spatial resolution of the luminescence data is ∼100 nm. The technique is enhanced by the ability to simultaneously perform X-ray microanalysis and electron imaging. Results are presented from epitaxially laterally overgrown GaN and InGaN/GaN structures using both single-layer SiO2 and multilayer SiO2/ZrO2 masks. Effects of strain and microcavity formation are resolved. Application of the technique to InGaN epilayers shows spatially-dependent shifts in the peak wavelength of the luminescence spectrum which correlate directly with microscopic variations in the indium content. Regions emitting at lower energy and with decreased intensity are shown to have higher InN contents, mirroring equivalent macroscopic observations. Finally the spectral mapping technique is used to analyse the luminescence from micron-scale selectively grown III-N pyramids, indicating possible formation of quantum dots at the sharp tips.